NS85 Programmer Reference Manual v2_1.doc Propnetary VerSIon . 2 . 1 . 0

NS85 PROGRAMMERS
REFERENCE MANUAL

Document Number: 501-0004
Version 2.1.0
October 16, 2003
© 2003 by: non-cents productions, LLC

PROPRIETARY RIGHTS NOTICE: The information, data, and drawings embodied in this document are the
proprietary and strictly confidential property of non-cents productions, LLC (NCP) and supplied on the understanding
that they will be held confidentially. Possession by and of itself does not convey any rights of ownership. This
document may not be reproduced, in full or in any part hereof, by any means, including photocopying, recording, or
through any information storage and retrieval system, without the expressed written consent of NCP.

Doc. Number: 501-0004 i

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

Version Number

Revision Description Date Originator
1.0.0 Initial creation. 4/25/03 | hwn
1.1.0 Major fixes, flags, pipeline, appendices 5/7/03 hwn
1.2.0 Add dmaconfig register, expand intro, explain | 5/22/03 | hwn

repeat count, fix typos.

2.0.0 New instructions (alu-acu, acu-immediate, 8/15/03 | hwn
alu-mac1) and functions (alu cumulative
subtraction, pipeline flush control on progflow,
nop token in alu/mac, acu tests). Remapped
opcodes. Instruction layout illustration added.
XF flag added. New mac input & shift controls.
Add labels. More descriptions.

2.1.0 Add iterate0/1 registers and iterate command. | 10/16/03 | hwn
Add ACUs as ACU data source. Fix sm_b#
input table errors. Fix typos.

Doc. Number: 501-0004 ii

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

Doc. Number: 501-0004 iii

NS85 Programmer Reference Manual v2_1.doc P rO p rleta ry

SECTION

1 Scope
2 Introduction

3 Programmers Model

3.1 Introduction

3.1.1

3.1.2

3.2 DSP Top Level

3.3 Program Unit Resources

3.3.1

3.3.2

3.3.3

3.34

3.3.5

3.3.6

3.3.7

3.4 ALUO Resources

3.4.1

3.4.2

3.4.3

3.4.4

3.4.5

TABLE OF CONTENTS

TITLE PAGE

Compute Modules..........ccooviiiiiiiiiieeeee e,

Processor Data Memoryccooovvviiiiiiiiiie e

Program Counter Register.........cccovvviiiiiiiiiiviiceee e,
Instruction Register.........ccoovviiiiii
Pimm Register ...
Repeat Register........ouviiiiiiiiii e,
lterate Registersoocuviiiiiiiii e
DMA Configuration Register ...,

Configuration Register...........cuueevviiiiiiiiiiie

ALUO X register ...
ALUO Y register ...
ALUO S registercoiiieiiiieecee e
ALUO Flags register.........cieeiiiiiiiieiciee e

ALUO Register BUSccoooiiiiiieiieeeeeeeeeee e

Doc. Number: 501-0004 iv

Version: 2.1.0

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

3.5 MACO RESOUICEScciiiuuunnrrrrrriisssisssssss s r s s s e r s an s e e e e e e aa e s ann R e e e e e e nn e nan 16
3.5.1 MAGCO X FEQISTEN ..t e e e e e e e et e e e e e e eeeenes 17
3.5.2 MACO Y reISIEr ...t ———— 18
3.5.3 MACO S regISTer ...t a e 19
3.5.4 MACO Flags reQISterot 20
3.55 MACO REQISIEIN BUSvueiiieeeeeeeee et e e 21

3.6 MACT RESOUICESccccuuuunerrrrriiisssissssss s r s s e s s e e e e e e e aa s ann e e e e e e e n e e nnn 22
3.6.1 MAGCT X FEQISTEN ..ttt e e e e e e 23
3.6.2 MACT Y reISIEN ... ———— 24
3.6.3 MACT S regiSter ... e s 25
3.6.4 MACHT FIags MEGISTEruueiiiiiieiiiitt et e e e e e e 26
3.6.5 MACT REQISIEI BUSveeiiieeeeeeee et 27

3.7 SM ACU & MemOry RESOUICESucuerrrriiiiiiiisnsnnss s sssssssssssss s s s ssssssss s s s sssssssnnnns 28
371 SM SERW ..ottt e et e et e e e e e e e e e e e e e ennees 29
B.7.2 SIM A FEQISTON .ttt e e e e a e as 29
B.7.3 SM I rEOISIEN e 29
374 SM S FEQISTON ..ot 30
B.7.5 SM E FISTON ..ceii it 30
376 SM R IEISIEI ... e 31
BT7.7 SMW rEGISIEr ... e 32
3.7.8 SM BO DUS ... e 33
B.7.9 SM BT DUS ..o 34
3710 SIM B2 DUS ... 35
3711 SM BB DUS ... e 36

3.8 ACU 0 Data Memory & ACU RESOUICEScceveeemmnniiiirrrrrsnmnsssssssssessessnnssssssssssssssnnnnns 37
3.8.1 E O U O Yo |] (=T 38
3.8.2 ACUD R rEQISTEN ...ttt e e ea e 38

Doc. Number: 501-0004 \%

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

3.8.3 ACUO W FEISTEI ...ttt e e e e e e e eeeeaaeeas 39
3.8.4 ACUD D regisSter.....cooiiiiiieii it e e 40
3.8.5 ACUO Post-modified POINtErouiiiiiiiiiiii e 40
3.9 ACU 1 Data Memory & ACU RESOUICESccuveeemunnciiiirrrrrsemnnssssssssesssssmsssssssssssssssnnnnns 41
3.9.1 E O U B O Yo [] (=T T 42
S I N O B Bt I S =T 15 (= PP 42
3.9.3 ACUT W FEISTEI ...ttt e e e e e e e e e e ns 43
3.9.4 ACUT D regiSter.. oottt 44
3.9.5 ACU1 Post-modified POINtErouiiiiiiiiiiie e 44
3.10ACU 2 Data Memory & ACU RESOUICESccuieemmunniiiirirrrenensssssssssesssssnsssssssssssssssnnnnns 45
3.10.1 ACUZ C regiSter ..ot e e e e e e e e 46
3.10.2 ACUZ R FEQISTEN ...ttt e e e e e e e e e e e e e b 46
3.10.3 ACUZ W regIStEI ... ceeeiiiiii et e e e e e e e e e 47
3.10.4 ACUZ D regISter ...ttt e e e e e e e e 48
3.10.5 ACU2 Post-modified POINtEroueiiiiiiiiie e 48
3.11ACU 3 Data Memory & ACU RESOUICESccccmmmmrriiiiinnssssss s ssssss s ssnnnns 49
3111 ACUS C regiSter. et e e e e e e e e 50
3.11.2 ACUSB R rEQISTN ...ttt e e e e e 50
3113 ACUS W reQIStEI ... e e e e e e e e e 51
Tt I N O 1 B I I =T £ (= PP 52
3.11.5 ACU3 Post-modified POINtErouiiiiiiiiiiii e 52
B 7 S o L= LT T=30 [o] o 4 1 o) o 53
3121 Pre-Fetch Stage......ccoovviiiii e 54
3.12.2 FETCH StAQE ... ueeiiiieiiiiiie ettt et e et e e e e et e e e e e e e e e e ennees 54
3.12.3 DECODE STAgE .. . eeiiiiiutiiieeaitiiia e ettt e e e ettt e e e et e e e e e aneeee e e aneeeeaeaaneeeeeeeanneeeaeeannees 54
3.12.4 EXECUTE StAQE ...eeiiiiiiiiieiiiiiiie ettt 54
3.12.5 DMEM SEAQE ..iiiiiieiiiiee ettt e et e et e e e e e e e e e e e e e e e nreeaeeanees 55

Doc. Number: 501-0004 Vi

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

3.12.6 Pipeling OPEerationuueuumuuuuiiiiiiiiii s 55
BA2.7 HAZAIAS ... 59
3.12.7.1 Control HAzards.........ooiieiiiiiiiiieee e 59
3.12.7.2 Structural Hazardseuiiiiiiiiei e 59
3.12.7.3 Data HazZards.........ccoooiiiiiiiiieee et 59
3.13INSLrUCLION TYPES ..coeeeeieiiriiinniinniinerirsssenssrsnassnssssnssssnssssssssssssss s s s s s s s ssssssssssssssssnssnssssnnnnnnn 62
4 Syntax & Language Constructs..........cccccciimimeiiiiimeciisssesisssssesssessmnenes
4.1 INtrodUCHION ..ot ———————————————————— 63
L B Y 1] - 63
4.2.1 o oo =10 o TR SRR 63
4.2.2 COMMENTS ..ttt e e e e e e 63
423 INSTFUCHIONS ... 64
4.2.4 INSTFUCLION CIAUSESoeiiiiiiiiee e 64
4241 Label Defing ClauSecccuuuiiiiiiiiii e 64
4242 Label USE ClAUSEcoiiiiiiiiiiiiiiee et 65
4243 Immediate ClauSE..........ueiiiiiiiii e 65
4244 PImMM ClauSEooiiiiiiii e 66
4245 Configuration ClaUSEuuiiiiiiii e 66
4246 DMA Configuration ClauSeooouuiiiiiiiiee e 66
4247 Register-See ClauSe.........couuuuiiiiiiiiieecc e 67
4.2.4.7.1 ALUO Register-See Clauseccooveiiiiiiiiiiieeiieeee e 68
4.2.4.7.2 MACO Register-See Clauseouueiiiiiiiiiiiiiiiiiie e 71
4.2.4.7.3 MACT Register-See Clauseuueiiiiiiiiiiiiiiiiiieee e 74
42474 SMRegister-See ClauSeccoiiiiiiiiiiiiiiiii e 77
42475 SMB0123 Register-See Clause..........cc.uueeiiieiiiiiiiiiiiiee e 79
42476 ACU 0 ACU Register-See ClausSeccccoouruuiiiiiiiiiiiiiiiieeeee e 83
4.2.4.7.7 ACU 0 Pointer Register-See Clause.............cccovvimiiiiiiiiieeiiiieeee e, 84

Doc. Number: 501-0004 Vii

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

5

4.2.4.7.8 ACU 1 Register-See Clause............uuuiiiiiiiiiiiiiiiiiiiiiee e 86
4.2.4.7.9 ACU 1 Pointer Register-See Clause.............cooovveiiiiiiiiiieiiiiceie e, 87
4.2.4.7.10 ACU 2 Register-See Clause...........ocouurueiiiiiiiiiiiiicii e 89
4.2.4.7.11 ACU 2 Pointer Register-See Clause..............ccccciiiiiiniiiiiiiieeiee e 89
4.2.4.7.12 ACU 3 Register-See Clause...........ooouvruiiiiiiiiiiiiiiiee e 91
4.2.4.7.13 ACU 3 Pointer Register-See Clause..............cooevviieiiiiiiiiiicceee e, 92
4248 Operation ClausSe..........ccoo i 93
4.2.4.8.1 ALUO Operation ClauSe........cccciiiiiieieeeeeeeeeeeeee e 94
424,82 MACO Operation ClauSe.........ccciiieiiiiiiiiiii et 98
4.2.4.8.3 MACT Operation ClaUSE...........uuuuummmiieee e 99
4.2.4.8.4 SM Operation ClauSecccocoiiiiiiiiiiiieiceeeeeee e 101
4.2.4.85 ACUO Operation ClaUSe........ccoiiieeiiiiiiiiicis et e e e e e eannnes 102
4.24.8.6 ACUT Operation ClaUSEccoiiiiiiiiiiiiiiii it e e e e 103
4.2.4.8.7 ACU2 Operation ClauSEccceeieiiieieiieeeeeeeee e 104
4.2.4.8.8 ACU3 Operation ClauSeccceeieiiiiieiieeeeeeeeeeee e 105
4.2.4.9 Update ClauSe.........oooviiiiiii i 106
4.2.4.9.1 ALUO Update ClauSe........ccceeiiiiiiiiiieieeee et 106
4.2.49.2 MACO Update ClausSe.........ccoeeiiiiiiiiiiiiieee e 107
4.2.4.9.3 MACT Update ClauSe........cccoieeiiiiiiiiiieee et 107
42494 SMUPAate ClaUSEovvuiiiiii e a e e e eeans 108
4.2.4.9.5 ACUO Update ClausSecccoeeiiiiiiieiiiiie e 108
4.24.9.6 ACUT Update ClausSeccccoeeeeiiiiiiiiiee et 109
42497 ACU2Update ClausSecccoieeeiiiiiiiiee et 109
4.2.49.8 ACU3 Update ClausSe........cccoeiiiiiiiiiiiiii e 110
Instruction Reference..........ccommiieeeciiiii
5.1 INtroduCtioneeeiiiiiiiier e ———— 111
5.2 Control INStruCtioNS ... 111

Doc. Number: 501-0004 viii

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

5.2.1 Configuration INSTIUCHIONSuiiiiiiiii e 111
522 Program FIow INStrUCLIONSccooiiiiiiic e 111
5.2.3 Data Flow Control INStruCtIONSuuiiiiiiiiiiiiieee e 112
5.3 Compute INStrucCtionscoiiiiiiiiicccr e e e 112
5.3.1 ALU INSTIUCHIONS ..t 112
5.3.2 ALU-MAC INSIrUCHIONSuiiiiiiiiiiiieie e 112
5.3.3 MAC INSHUCHIONS ...t e e e ee e 113
6 ACU configuration instruction............ccciimiciiiicc e 114
0t Y31 - SO 114
07 o 1= Y1 o7] o1 o o PPN 114
6.3 flags affected ... ———— 114
L = =0 1 o =P 115
7 ACU Data Memory 0/1 with immediate instruction.............................. 116
74800 -T2 - SO 116
487« 1= Y3 o7 4] o1 o o PPN 116
7.3 flags affectedo i e 116
A 3= €= T2 1 o = OO 116
8 ACU Data Memory 0/2 with immediate instruction.............................. 117
R T 1 O 117
L= 077 o 1= Y3 o7 4] o1 o o PPN 117
8.3 flags affectedcco i e 117
LS = €= T 1 o = OO 117
9 ACU Data Memory 0/3 with immediate instruction.............................. 118
0.1 SYNEAX..uuuuuuuunnnnnnnnnn 118
£ T2 o [>T o T o1 oY P 118
9.3 flags affectedooo i e 118

Doc. Number: 501-0004 iX

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

L2 T ST= €= 1 1 4 o 1= SO 118

10 ACU Data Memory 1/0 with immediate instruction...........cccccccorneennenins 119
10,1 SYNTAX .. 119
0B o L= T =T o T o o o 119
10.3flags affected ... e 119
0T =3 T] o1 L= PPN 119

11 ACU Data Memory 1/2 with immediate instruction.........cccccccccevrrnneeee. 120
T A SYNTAX . ——————————— 120
T o L= T =T o T o o) o 120
11.3flags affected ... e 120
T =3 - 11T o1 L= 120

12 ACU Data Memory 1/3 with immediate instruction.........cccccccccevrrnneeee. 121
1 2.1 SYNTAX. .. —————————— 121
P2 o L=X=T o3 4 T o 4o o ORIt 121
12.3flags affected ... e 121
P =3 - 11] o1 L= 121

13 ACU Data Memory 2/0 with immediate instruction...........cccccccovreennnnnns 122
13, SYNTAX .. ————————— 122
T o T=X =T oF 4 T o £ o o PPNt 122
13.3flags affected ... e 122
I =3 - 11] o1 (= 122

14 ACU Data Memory 2/1 with immediate instruction...........ccccccevvveennnnnns 123
141 SYNTAX. ... 123
I 3o T=X=T o3 T o £ o o OOt 123
14.3flags affected ... ——————— 123
O =3 - 11] o1 (= 123

Doc. Number: 501-0004 X

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

15 ACU Data Memory 2/3 with immediate instruction...........ccccccevvveennnnnns 124
T 13 11 SRR 124
(I o L=E =T o T o (o o U 124
15.3flags affected ... —————— 124
TSI =3 11] o] (=P 124

16 ACU Data Memory 3/0 with immediate instruction...........ccccccevvveennnnnns 125
ST 13 1 RSP 125
ST o F=E =T o T o o] o 125
16.3flags affected ... —————— 125
ST =3 11] o1 L= PR 125

17 ACU Data Memory 3/1 with immediate instruction.........cccccccccevrrnneeee. 126
00 -3 11 PRSPPI 126
I 7 o L=T =T o3 T o (o o 126
17.3flags affectedo e 126
I =3 11] o1 (=PRI 126

18 ACU Data Memory 3/2 with immediate instruction...........cccccccorneeneenent 127
18,1 SYNtAX. ... ——————————— 127
B0 o L=T =T o T o (o] o 127
18.3flags affected ... e 127
B =3 11] o] (=P 127

19 ALU-ACU instruction...........ce it rces e s e s e e e e e 128
1.1 SYNTAX .. ——————————— 128
R T o L=T =T o T o o o 128
19.3flags affected ... e 128
T =3 - 11] o1 L= 129

20 ALUO with Immediate instructioncccoiiiimiiiiiin e 130

Doc. Number: 501-0004 Xi

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

b TR =Y - SO 130
0 B =X o T o1 oY P 130
20.3flags affected ... ———————————— 130
b B = €= T 4 o 1= SO 130

21 ALUO-MACO inStruction..........coooiiiemeeiiiiiiiiiiinrnr s 131
g I = 1= SO 131
20 I L= X o T o1 oY PP 131
21.3flags affectedcoo e e n s 131
g I 1= €= 1 4 o 1= OO 131

22 ALUO-MACT insStruction..........cooiiiieeeiciiiiiiii s 132
22,1 SYNEAX...uuuununnnnnnnnnnnnn 132
27207 o =X o T o1 oY 1O 132
22.3flags affectedcoo i e n s 132
728 1= €= 1 1.4 o 1= PP 132

23 Branch instruction..........eeiiicc 133
23,1 SYNEAX..cuuuuuennnnnnnnnn 133
2 7. o =X o T o1 oY TP 133
23.3flags affectedcoo oo 133
2 T 1= - 14 o 1= 133

24 Call iNStrUuCHiON.. ..o 134
24,1 SYNTAX....uuuuuuunnnnnnni 134
2 3o =X o 1 oY1 oY 1O 134
24.3flags affectedcoo oo e n s 134
B = - 4o 1= 134

25 Configuration Register load instructionccccooriiiriicciiicceceeee, 135
25,1 SYNEAX...uuuuuennnnnnnnnn 135

Doc. Number: 501-0004 Xii

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

25.2deSCrIiPtiON.... .o e e e e e e e e e nnn s 135
25.3flags affected ... ———————————— 135
1 30 1= = 14 o 1= 135

26 DMA Configuration Register load instructioncocceiiiiinniinnenen. 136
b 30 = - SO 136
26.2deSCriPtiON.......o i e e e e e e e e e nnn s 136
26.3flags affected ... ———————————— 136
B T = €= 1 4 o 1= SO 136

27 If (conditional execution) instructionccccoiiiiiiiimicci e, 137
B 00 -3 1= SO 137
27 7o =X o T o1 oY OO 137
27.3flags affected ... ———————————— 138
7 - 1= €= 11 4 o 1= SO 138

28 Iterate inStruction ... ——— 139
20 = - SO 139
207 =X o T o1 oY TP 139
28.3flags affected ... ——————————— 139
T = €= 1 4 o 1= SO 139

29 MACO with Immediate instruction ... 140
B TR =Y - SO 140
29.2deSCrIPLION... .o nn e s e r e e s e e e e e e e n s 140
29.3flags affectedcoo i 140
e B X= €= 1 4 o 1= SO 140

30 MACO-MACT inStruCtion.........couiiieemeeiciii e 141
BT TR - 141
BT 7o 1= =3 o7] o1 o o PPN 141

Doc. Number: 501-0004 Xiii

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

30.3flags affectedcooiieeccrr s e 141
BT 1o =T 1 o =P 141

31 MACO-MAC1-ACU INStrucCtionccceuueeiiiiiiiiiiiirrieeees s 142
B I 1 O 142
B 20 7o 1= Y3 o7 4] o 4 o o PPN 142
31.3flags affectedcoo e e 143
B30 R 1= T 1 o] = PP 143

32 MAC1 with Immediate instructioncccmmiiicicccii e, 144
B 1 144
B o [=Y3 o7 4 1 ¢ 1 o o 1PN 144
32.3flags affected ... —————— 144
B0 1= T 1 o =P 144

33 NOP INSLrUCLION ...t e e e e 145
B Mg Y31 - SO 145
B 2o [=Y3 o7 4] 0 1 o o PPN 145
33.3flags affected ... —————— 145
B 1= T 1 o] =P 145

34 Repeat inStruction ... e e 146
BT B oY 3 - SO 146
BT 37 o [=Y3 o7 4 1 ¢ 1 o o 1PN 146
34.3flags affected ... —————— 146
BT N Y= - T 1 o =P P 146

35 Return insStruction...........cccooiiiiiiiie e ————— 147
BT g Y3 - SO 147
B0 7o 1= Y1 o7] o1 o o PPN 147
35.3flags affected ... ———— 147

Doc. Number: 501-0004 Xiv

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

B Y= =T 1 o =P 147
36 Scratch Memory/Pointer Cache with immediate instruction
B TR I - 148

BT 07 o 1= =3 o7] o1 o o PPN 148
36.3flags affectedcooiieece e 148
BT Y= =T 1 o =P 148
37 Appendix — Instructions in Numerical Ordercoceeeeiiiimieeeecinnenns
38 Appendix — Using the Asm85 Assemblerccovreiiiiiiciiimieecninneennnn.
38 AREqUIrEMENTS ... e e e e e e rnnnnnnan 154
38.1.1 Operating ENVironmMeENt..........ooomiiiiiii e 154
38.2INVOCALIONeeeeieeiiiiiiiie e —— 154
38.2.1 Program OPLIONSuuuuuuuieiiiiiiiiiiii s 154
38.2.2 Normal output €XampIE........coooiiiiiiii e 155
38.2.3 Listing mode output eXamplecooooiiiiiiiiii e 155

Doc. Number: 501-0004 XV

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

1 Scope

This document describes the programming aspects of the NS85 CU (Compute Unit). While the
machine architecture will be discussed, as apropos to the programming, the wise reader in need
of more details will seek out the “NS85 DSP MicroArchitecture” document, 501-0006.

This document is mostly constructed of tables of reference material which are often duplicated
in several places. This has been done in an attempt to minimise the need to flip back and forth
between different areas of the document by placing relevant information close at hand to the
reader. Apologies for both the places where this fails and any resultant sense of déja vu.

2 Introduction

The NS85 CU (a.k.a. the NS85 DSP) consists of multiple processing units and multiple
memories connected via several data-paths. It is all controlled by a Program Control Unit (PCU)
based upon a truncated Very Long Instruction Word (VLIW) architecture. The syntax for
programming the DSP is described in this document.

Section 1 describes the scope of this document.
Section 2 provides a brief introduction.

Section 3 of this document details the architecture and resources of the NS85 DSP, the
operational characteristics of the pipeline, and a brief introduction to the instructions that the
machine can execute.

First is presented an overview of the DSP architecture, illustrating all the major blocks and
interconnects. After the top level, each of the major blocks is presented, starting with the PCU.
The PCU resources are illustrated, but discussion of the actual operation is postponed until later
in the section. Next is presented the architecture of the ALU and the two MAC computation
modules — the presentation is of the structure of the modules, not their detailed functionality.
The section continues with an architectural presentation of the Address Calculation Unit (ACU)
for the Scratch Memory (SM), which are used together as a 2-level cache for memory pointers.
Following that, the four ACUs associated with the Data Memories are presented.

Next is presented detailed information about the machine pipeline and a discussion of the
“hazards” possible as the the machine architecture executes the stream of instructions. Finally,
the different types of instructions are introduced.

Section 4 presents and defines the syntax and language constructs. This section further
illuminates the machine architectural details by presenting the means by which the programmer
can control such details. First among these details is the selection, for each register in each
module, of one of the several possible data sources. Next presented are the details functional
operations which are to be performed by each module. Finally is presented the way in which the
programmer controls the writing of data to the various machine registers.

Section 5 presents the instruction set at a high level.

Sections 6 through 36 present the summary information for each of the instruction types, each
in its own section.

Doc. Number: 501-0004 1

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

3 Programmers Model
3.1 Introduction

The NS85 CU (a.k.a. the NS85 DSP) is illustrated in Figure 3.1. It consists of multiple compute
modules and multiple memories connected via four data busses. It is all controlled by a Program
Control Unit (PCU). The PCU contains several programmer accessible registers. General DSP
configuration is controlled by the config and dmaconfig registers, and instruction repetition is
controlled by the repeat and iterate registers. Changes in program flow are accomplished
by assignment to pc, the program counter register.

Each DSP instruction controls a subset of the multiple processing units, the multiple memories,
and the PCU. A truncated Very Long Instruction Word (VLIW) architecture has been adopted,
so not all things possible in the architecture are supported by the instructions.

3.1.1 Compute Modules

The DSP consists primarily of a computation core interconnected via four data busses with
several memories. The core of the DSP consists of three compute modules: one ALU, “ALUQ”
and two multiplier-accumulator (MAC) units, “MACO” and “MAC1”, respectively. Syntactically,

LT

these are usually “a0”, “m0”, and “m1”.

Each of the computation modules has a group of associated registers which are tightly bound.
These are the “x” and “y” input registers, the “s” register for computation output, and the “£”
register for condition codes (a.k.a. “flags”). The syntactic names for these registers are
constructed by utilizing the compute module name, as above, and then joining the register name

to it with an underscore, e.g. “a0_x", ‘m1_f£”, etc.

The registers in each module all serve as selectable inputs to the register-bus, or r-bus, for that
module. The r-bus is used for efficient local communications between the computation modules.
The r-bus name is formed in the same manner as the names of the registers, e.g. “‘m0_r”. The r-
bus is not, however, registered: it will dynamically pass the value of the register selected as its
source.

3.1.2 Processor Data Memory

Four external data memories, each with an associated Address Calculation Unit (ACU) and data
bus, provide data to the DSP core. There is an additional Scratch Memory (SM) and its
associated ACU which form a two level pointer cache to service the data memory ACUs. The
names of resources associated with these global busses are constructed by concatenating “b”
and the bus number (0-3), an underscore and the name of the resource in the manner
described above. E.g. “b0_w", “bl_c”, etc.

Doc. Number: 501-0004 2

NS85 Programmer Reference Manual v2_1.doc

3.2 DSP Top Level

ACU

ACU

ACU

ACU

IR IR

Proprietary

Data

Data

Data

Data

Scratch Memory (SM)
(ptr cache)

ACU

Doc. Number: 501-0004

Memory S —
0
Memory S
1

yemory]
2
U —
3

Version: 2.1.0
ALUO
MACO
MACA1
Program
Control
Unit
Program

[

Memory

Figure 3.1 - High Level View of the DSP

Version: 2.1.0

Proprietary

NS85 Programmer Reference Manual v2_1.doc

3.3 Program Unit Resources

pimm

Decode & control generation

dmaconfig

pimm

ﬁ

ﬂ

%

stack

Instruction regisger

|
" Program Memory
|]
|

H

+1

pc

—>
pimm

repeat 4] iteratel

iteratel

Figure 3.2 — Simplified PCU Block Diagram

Doc. Number: 501-0004

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

3.3.1 Program Counter Register

description token(s)
the Program Counter register pc

Table 3.1 — Program Counter Register Syntax

3.3.2 Instruction Register

This register captures the instruction read from the program memory.

3.3.3 Pimm Register

description token(s)
the pimm register (16 bit) pimm

Table 3.2 - Pimm Register Syntax
The pimm (Program IMMediate) register is used to load constant data from the program space.

A Pimm Clause (see 4.2.4.4) is used for this. Because of the pipeline operation, it is possible to
load the pimm register and make use of the data in the same instruction.

3.3.4 Repeat Register

description token(s)
the Repeat register (16 bit) repeat

Table 3.3 - Repeat Register Syntax

The repeat register controls the repetition of the next instruction in the program space. The
register is 16 bits wide, thus accommodating constants from 65535 (0xffff) down to 1 (zero is not
valid.) The hardware does one more repetition than the number which is actually loaded into the
register (but the assembler makes a sensible adjustment). The minimum repeat count at the
source code level is 2, the maximum is 65536. See the Repeat instruction description in section
34 for more information.

Doc. Number: 501-0004 5

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

3.3.5 Iterate Registers

description token(s)
iterate register #0 (16 bit) iterate0
iterate register #1 (16 bit) iteratel

Table 3.4 - Iterate Register Syntax

The iteration counter registers (iterate0 and iteratel) provide a low-overhead means to
implement the repetition of instruction blocks in the program space. Such program blocks may
be nested. In use, the registers are assigned a value corresponding to the number of times the
block is to be repeated, and the test/modification operations occur in a conditional instruction.

The registers are 16 bits wide, thus accommodating constants from 0 to 65535 (0xffff.) The
minimum number of instructions in a block, including the conditional test instruction and the 3
which follow, is 5. This is illustrated below:

iterate0 = 42;

myloop: instruction (s);

if (iterate0O-- != 0)
pc = myloop;
Code block instruction; potential
instruction; pipeline
instruction; bubble

The 3 instructions after the conditional should consist of computation instructions. They cannot
include program flow instructions such as repeat.

Doc. Number: 501-0004 6

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

3.3.6 DMA Configuration Register

description token(s)

the DMA Configuration | dmaconfig

register

(see 4.2.4.6) enable (1) disable (0)
dmaconfig[0]: Configure | Se€e_dma (on) see_dma (off)

ALUO inputs to access DMA
Address pointers instead of
the pimm register

dmaconfig([l]: Configure aden (on) aden (off)
A/D block write control

dmaconfig[2]: Configure | daen (on) daen (off)
D/A block write control

dmaconfig[3]:Select A/D adb (1) adb (0)
DMA bus pair 0 (and 3) or 1

(and 2)

dmaconfig[4]:Select D/A dab (1) dab (0)
DMA bus pair 0 (and 3) or 1

(and 2)

dmaconfig[9..5]1: specify | msls(/) i={0,1,2,3,4..19}
MAC static left shift value for

e.g. 1s(3
MAC r_bus data g- msls(3)

dmaconfig[10]: select the | mSft(&al_s) msft (&msls)
MAC r_bus data shift as
computed (from a0_s[3:0]) or
static (dmaconfig[9..5])

Table 3.5 — DMA Configuration Register Syntax

Doc. Number: 501-0004 7

Version: 2.1.0

NS85 Programmer Reference Manual v2_1.doc Proprietary
3.3.7 Configuration Register
description token(s)
the Configuration register config
(see 4.2.4.5) enable (1) disable (0)
Configure ALUO SATURATION mode | 20 (sat) a0 (unsat)
(config[0]1)
ml (sat) ml (unsat)

Configure MAC1 SATURATION mode
(configl[l])

Configure MAC1
(configl[2])

ROUNDING mode

ml (round)

ml (noround)

Configure MAC1 to FRACTIONAL mode
(config[31)

ml (fract)

ml (int)

Configure MACO to SATURATION mode
when set (config[4])

mo (sat)

mO0 (unsat)

Configure MACO ROUNDING mode

(config[51)

mO0 (round)

mO0 (noround)

Configure ACU 0 I/O vs Memory mode
(config[11])

Configure MACO to FRACTIONAL mode | ™0 (fract) m0 (int)
(config[6])
Configure ACU 3 CIRCULAR mode | P3(circ) b3 (1in)
(config[7]1)
Configure ACU 2 CIRCULAR mode | P2 (circ) b2 (1lin)
(config([81)
Configure ACU 1 CIRCULAR mode | P1(cire) bl(1lin)
(config[9])
Configure ACU 0 CIRCULAR mode | P0(circ) b0 (1in)
(config([10])

io0 (on) io0 (off)

Select external flag for
(config[1l5..12]

testing

xf (/) i={0,1,2,3,4...15}

e.g. xf (3)

Table 3.6- Configuration Register Syntax

Doc. Number: 501-0004 8

NS85 Programmer Reference Manual v2_1.doc PrOprIetary Ve rSIOﬂ 2.1 .0

3.4 ALUO Resources

)
e |o
w
(=
b0 bus —» >
—P> comp a0
g results
pimm la
=3 flag N
info
o Hh
mo0 r> |° pimm
ml r = -
—P o
b0 bus | [P >
——> W)
bl_bus > =
[
b2 bus ‘§
b3 bus
;’
—P
>)
m0 r ©
ml r 5,
b0 bus — >
bl bus o
_ Io L
b2 bus 3 p| | 20T
b3_bus >
— >
value in pimm reg
\\pimm"
SDAD DMA write addr
>< value in pimm reg
\\pimll 4

<SDDA DMA read addr

Figure 3.3 - ALUO Block Diagram

Doc. Number: 501-0004 9

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

The core of the ALUO module is an arithmetic-logic unit. The module has two input registers,
designated a0 x and a0_y, and two output registers designated a0 _s (for results) and a0 _f
(for flag indications.)

Any one of the ALUO module registers may be driven on to an output “register bus” (or “r-bus”),
called a0_r, for delivery to the data memories and the other computation modules. Note that
the a0 _r bus is not a register.

In a single instruction cycle, the ALUO module can load data from any one or two of the four
data memory systems, via b0 _bus, bl bus, b2 bus, or b3 bus, respectively. Immediate
data, via the Pimm Register, may also be input to the module. The contents of registers in the
other computation modules may be accessed via the appropriate r-bus.

The ALUO module also has special hardware to allow the loading of the current DMA addresses
into the ALUO input registers. This functionality is controlled by bit 0 of the DMA Configuration
Register. When this function is selected, the see clause must select pimm, as illustrated in
Figure 3.3.

Doc. Number: 501-0004 10

NS85 Programmer Reference Manual v2_1.doc P rOp rleta ry

3.4.1 ALUO X register

description

token(s)

the entire ALUO x register

a0 x[31:0]
a0 x

{20 xh,a0 x1}

the high half of the ALUO x register

a0 x[31:16]
a0 xh

the low half of the ALUO x register

a0 x[15:0]

a0 xl1

Table 3.7 - ALUO X Register Syntax

description token(s)

the program immediate register or | Pimm

the DMA write address used for

incoming SDAD data as selected by

“see_dma” dmaconfig register bit 0.

the ALU result a0

the BO bus from data memory b0_bus
b0

the B1 bus from data memory bl_bus
bl

the B2 bus from data memory b2_bus
b2

the B3 bus from data memory b3_bus
b3

the register bus from MACO m0_r
m0_reg
m0 bus

the register bus from mac1 ml r
ml reg
ml bus

typical use (see 4.2.4.7.1)

a0 x(&pimm)

Table 3.8 - ALUO X Register Inputs

Doc. Number: 501-0004 11

Version: 2.1.0

NS85 Programmer Reference Manual v2_1.doc P rOp rleta ry

3.4.2 ALUOY register

description token(s)
the entire ALUO y register a0_y[31:0]

a0 y
{20 yh,a0 yl1}

the high half of the ALUO y register

a0_yI[31:16]
a0 yh

the low half of the ALUO y register

a0_y[15:0]
a0 yl

Table 3.9 - ALUO Y Register Syntax

typical use (see 4.2.4.7.1)

description token(s)

the program immediate register or | Pimm

the DMA read address used for

outgoing SDDA data as selected by

“see_dma” dmaconfig register bit 0.

the ALU result a0

the BO bus from data memory b0_bus
b0

the B1 bus from data memory bl_bus
bl

the B2 bus from data memory b2_bus
b2

the B3 bus from data memory b3_bus
b3

the register bus from MACO m0_r
m0_reg
m0 bus

the register bus from mac1 ml r
ml reg
ml bus
a0 y (&m0)

Table 3.10 - ALUO Y Register Inputs

Doc. Number: 501-0004 12

Version: 2.1.0

NS85 Programmer Reference Manual v2_1.doc

3.4.3 ALUO S register

Proprietary

description token(s)
the entire ALUO s register a0_s[31:0]
a0_s

{20 _sh,a0 sl}

the high half of the ALUO s register

a0 sh

a0 s[31:16]

the low half of the ALUO s register a0_s[15:0]

a0 sl

Table 3.11 - ALUO S Register Syntax

description token(s)
the program immediate register pimm

sign extended value from the | (int)pimm
program immediate register

the BO bus from data memory b0_bus
bo
the ALU result a0

typical use (see 4.2.4.7.1)

a0 s (&(int)pimm)

Doc. Number: 501-0004

Table 3.12 - ALUO S Register Inputs

13

Version: 2.1.0

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

3.4.4 ALUO Flags register

description token(s)
the entire ALUO Flags register a0_f
a0 flag

the OVERFLOW flag bit in the ALUO Flags | 200V
register (a0_f[0])

the STICKY OVERFLOW flag bit in the ALUO | @080V
Flags register (a0_f[1])

the ZERO flag bit in the ALUO Flags register | 20Z
(a0_f[2])

the STICKY ZERO flag bit in the ALUO Flags | 2082
register (a0_f[3])

the GREATER_THAN_OR_EQUAL_TO_ZERO | 20ge
flag bit in the ALUO Flags register (a0_f[4])

the STICKY | a0sge
GREATER_THAN_OR_EQUAL_TO_ZERO flag
bit in the ALUO Flags register (a0_f[5])

the GREATER_THAN_ZERO flag bit in the algt
ALUO Flags register (a0_f[6])

the STICKY GREATER_THAN_ZERO flag bit in | 2089t
the ALUO Flags register (a0_f[7])

the CARRY_OUT flag bit in the ALUO Flags | 20¢
register (a0_f[8])

the STICKY CARRY_OUT flag bit in the ALUO | 208¢
Flags register (a0_f[9])

Table 3.13 - ALUO Flags Register Syntax

description token(s)
the program immediate register pimm

the ALU result a0

typical use (see 4.2.4.7.1) a0_f (&a0)

Table 3.14 - ALUO Flags Register Inputs

Doc. Number: 501-0004 14

NS85 Programmer Reference Manual v2_1.doc P rOp rleta ry

3.4.5 ALUO Register Bus

description token(s)

the ALUO register bus a0_r
a0 reg
a0 bus

Table 3.15 - ALUO Register Bus Syntax

description token(s)

the high half of the ALUO x register | @0_%[31:16]
a0 xh

the low half of the ALUO x register a0_x[15:0]
a0 x1

the high half of the ALUO y register | @80_y [31:16]
a0 _vh

the low half of the ALUO y register a0_y[15:0]
a0_yl

the high half of the ALUO s register | 2@0_s[31:161]
a0 sh

the low half of the ALUO s register a0_s[15:0]
a0 sl

the entire ALUO Flags register a0_f
a0 flag

typical use (see 4.2.4.7.1)

a0 r(&al0_sh)

Table 3.16 - ALUO Register Bus Inputs

Doc. Number: 501-0004 15

Version: 2.1.0

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

3.5 MACO Resources

pimm
{b2 bus,

bl_buS ’ n comp mo
b0 bus? results

ou

a0 r

pimm

v

m0_sl th
ml r pimm
a0 r
b0 bus
bl bus
b2 bus
b3 bus
pimm

| m0_sh

0
\ 4
(.0w,) 0OVIN

a0 r

b0 bus —» g
;’

bl bus

b2 bus

b3 bus

ou

m0 r

VV*

Figure 3.4 - MACO Block Diagram

The core of the MACO module is a multiplier and accumulator unit. The module has two input
registers, designated m0_x and m0_y, and two output registers designated m0_s (for results)

and m0_ £ (for flag indications.)

Any one of the MACO module registers may be driven on to an output “register bus” (or “r-bus”),
called m0_r, for delivery to the data memories and the other computation modules. Note that

the m0_r bus is not a register.

Doc. Number: 501-0004 16

NS85 Programmer Reference Manual v2_1.doc P rO p rleta ry

In a single instruction cycle, the MACO module can load data from any one or two of the four
data memory systems, via b0 _bus, bl bus, b2 bus, or b3 bus, respectively. Immediate
data, via the Pimm Register, may also be input to the module. The contents of registers in the
other computation modules may be accessed via the appropriate r-bus.

3.5.1 MACO X register

the entire MACO x register

description token(s)
m0 x

Table 3.17 - MACO X Register Syntax

description token(s)

the program immediate register pimm

the high half of the m0_s register m0_sh

the BO bus from data memory b0_bus
b0

the B1 bus from data memory bl_bus
bl

the B2 bus from data memory b2_bus
b2

the B3 bus from data memory b3_bus
b3

the register bus from MAC1 ml r
ml reg
ml bus

the register bus from ALUO a0_r
al0_reg
a0 bus

typical use (see 4.2.4.7.2)

m0_x (&pimm)

Table 3.18 - MACO X Register Inputs

Doc. Number: 501-0004 17

Version: 2.1.0

NS85 Programmer Reference Manual v2_1.doc P rOp rleta ry

3.5.2 MACO Y register

the entire MACO y register

description token(s)
m0_ vy

Table 3.19 - MACO Y Register Syntax

typical use (see 4.2.4.7.2)

description token(s)

the program immediate register pimm

the low half of the m0O_s register mo_sl

the BO bus from data memory b0_bus
bo

the B1 bus from data memory bl_bus
bl

the B2 bus from data memory b2_bus
b2

the B3 bus from data memory b3_bus
b3

the register bus from MAC1 ml r
ml reg
ml bus

the register bus from ALUO a0_r
a0 reg
a0 bus
m0_y (&bl)

Table 3.20 - MACO Y Register Inputs

Doc. Number: 501-0004 18

Version: 2.1.0

NS85 Programmer Reference Manual v2_1.doc P rO p rleta ry

3.5.3 MACO S register

description token(s)

the entire MACO s register, including | ®0_s [39:0]

guard bits

the entre MACO s register, | ®0_s[31:0]

excluding guard bits mo_s

the guard bits of the MACO s |m0_s[39:32]

register mo_sg

the high half of the MACO s register | m0_s[31:16]
m0_sh

the low half of the MACO s register | ®0_s[15:0]
m0_sl

Table 3.21 - MACO S Register Syntax

description token(s)
sign extended value from the | (1ong)pimm
program immediate register
the {b2[7:0],b1,b0} buses from data | P_Pus
memory
the MAC result m0
the register bus from ALUO (sign | 20_%
extended value biased to mO_sh, | a0 reg
mO_sl gets zeroes) B

a0 bus

typical use (see 4.2.4.7.2)

m0_s (& (long) pimm)

Table 3.22 - MACO S Register Inputs

Doc. Number: 501-0004 19

Version: 2.1.0

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

3.5.4 MACO Flags register

description token(s)
the entire MACO Flags register mo_£
m0 flag

the 40_BIT_OVERFLOW flag bit in the MACO | m0€ov
Flags register (m0_f[0])

the STICKY 40_BIT_OVERFLOW flag bit in the | m0S€oV
MACO Flags register (mO_f[1])

Table 3.23 - MACO Flags Register Syntax

description token(s)

the program immediate register pimm

the MAC result mo0
m0_ £ (&m0)

typical use (see 4.2.4.7.2)

Table 3.24 - MACO Flags Register Inputs

Doc. Number: 501-0004 20

NS85 Programmer Reference Manual v2_1.doc

Proprietary

3.5.5 MACO Register Bus

description token(s)

the MACO register bus m0_r
m0 reg
m0 bus

Table 3.25 - MACO Register Bus Syntax

description token(s)
the MACO x register mo_x
m0_y

the MACO y register

the guard bits of the MACO s
register

m0 s[39:32]
m0 sg

the high half of the MACO s register

m0 s[31:16]
m0 sh

the low half of the MACO s register

m0 s[15:0]

m0 sl

The sign extended version of the
guard bits of the MACO s register

(int)m0 s[39:32]
(int)m0_ sg

the entire MACO Flags register

m0_ £

typical use (see 4.2.4.7.2)

m0 r (&m0 sh)

Table 3.26 - MACO Register Bus Inputs

Doc. Number: 501-0004 21

Version: 2.1.0

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

3.6 MAC1 Resources

pimm
{b2 bus,

bl_buS ’ n comp ml
b0 bus? results

Tu

0
a0 r flag
info

pimm
ml sl |
——> .
m0 r pimm
a0 r
b0 _bus | [
;’
bl bus
b2 bus
b3 bus
pimm
ml sh

m0_r

T
A 4

(.bw,) LOVIA

a0 r

b0 _bus | TP | >
—>

bl bus

b2 bus

b3 bus

Tu

ml r

VV*

Figure 3.5 — MAC1 Block Diagram

The core of the MAC1 module is a multiplier and accumulator unit. The module has two input
registers, designated m1_x and m1_y, and two output registers designated m1_s (for results)
andml_f£ (for flag indications.)

Any one of the MAC1 module registers may be driven on to an output “register bus” (or “r-bus”),

called m1_r, for delivery to the data memories and the other computation modules. Note that
theml r busis not a register.

Doc. Number: 501-0004 22

NS85 Programmer Reference Manual v2_1.doc P rO p rleta ry

In a single instruction cycle, the MAC1 module can load data from any one or two of the four
data memory systems, via b0 _bus, bl bus, b2 bus, or b3 bus, respectively. Immediate
data, via the Pimm Register, may also be input to the module. The contents of registers in the

other computation modules may be accessed via the appropriate r-bus.

3.6.1 MAC1 X register

the entire MAC1 x register

description token(s)
ml x

Table 3.27 - MAC1 X Register Syntax

description token(s)

the program immediate register pimm

the high half of the m1_s register ml_sh

the BO bus from data memory b0_bus
bo

the B1 bus from data memory bl_bus
bl

the B2 bus from data memory b2_bus
b2

the B3 bus from data memory b3_bus
b3

the register bus from MACO m0_r
m0_reg
m0 bus

the register bus from ALUO a0_r
al0_reg
a0_bus

typical use (see 4.2.4.7.3)

ml x(&b3_ bus)

Table 3.28 —- MAC1 X Register Inputs

Doc. Number: 501-0004 23

Version: 2.1.0

NS85 Programmer Reference Manual v2_1.doc P rOp rleta ry

3.6.2 MACH1 Y register

the entire MAC1 y register

description token(s)
ml y

Table 3.29 — MAC1 Y Register Syntax

typical use (see 4.2.4.7.3)

description token(s)

the program immediate register pimm

the low half of the m1_s register ml_sl

the BO bus from data memory b0_bus
bo

the B1 bus from data memory bl_bus
bl

the B2 bus from data memory b2_bus
b2

the B3 bus from data memory b3_bus
b3

the register bus from MACO m0_r
m0 reg
m0 bus

the register bus from ALUO a0_r
a0 reg
a0 bus
ml y(&bl)

Table 3.30 — MAC1 Y Register Inputs

Doc. Number: 501-0004 24

Version: 2.1.0

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

3.6.3 MACH1 S register

description token(s)

the entire MAC1 s register, including | ®1_s [39:0]
guard bits

the entre MAC1 s register, | ®1_s[31:0]
excluding guard bits ml s

the guard bits of the MAC1 s |ml_s[39:32]
register ml sg

the high half of the MAC1 s register | m1_s[31:16]
ml sh

the low half of the MAC1 s register | m1_s[15:0]
ml sl

Table 3.31 - MAC1 S Register Syntax

description token(s)

sign extended value from the | (1ong)pimm
program immediate register

the {b2[7:0],b1,b0} buses from data | P_Pus
memory

the MAC result ml

the register bus from ALUO (sign | 20_%
extended value biased to m1_sh, a0 reg

m1_sl gets zeroes) 20 bus
u

typical use (see 4.2.4.7.3) ml_s (&(long)pimm)

Table 3.32 - MAC1 S Register Inputs

Doc. Number: 501-0004 25

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

3.6.4 MACH1 Flags register

description token(s)
the entire MAC1 Flags register ml_£
ml flag

the 40_BIT_OVERFLOW flag bit in the MAC1 | mleov
Flags register (m1_f[0])

the STICKY 40_BIT_OVERFLOW flag bit in the | m18€0V
MAC1 Flags register (m1_f[1])

Table 3.33 — MAC1 Flags Register Syntax

description token(s)
the program immediate register pimm
the MAC result ml

ml f (&ml)

typical use (see 4.2.4.7.3)

Table 3.34 — MAC1 Flags Register Inputs

Doc. Number: 501-0004 26

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

3.6.5 MAC1 Register Bus

description token(s)

the MAC1 register bus ml_r
ml reg
ml bus

Table 3.35 — MAC1 Register Bus Syntax

description token(s)
the MAC1 x register ml_x
the MAC1 y register ml_y

the guard bits of the MAC1 s |ml_s[39:32]
register ml sg

the high half of the MAC1 s register | ®1_s[31:16]
ml sh

the low half of the MAC1 s register | ®1_s[15:0]

ml sl
The sign extended version of the | (int)ml_s[39:32]
guard bits of the MAC1 s register (int)ml sg

ml £

the entire MAC1 Flags register

typical use (see 4.2.4.7.3) ml_r(&ml_sh)

Table 3.36 — MAC1 Register Bus Inputs

Doc. Number: 501-0004 27

NS85 Programmer Reference Manual v2_1.doc

3.7 SM ACU & Memory Resources

sm[15:0]
— >
pimm
pimm
pimm
pimm
pimm

sm[31:16]

EE—
pimm
pimm
pimm
pimm
pimm

sm[47:32]

BEE—
pimm
b0 r
bl r
b2 r
b3 r

sm[63:48]

—P
pimm
b0 w
bl w
b2 w
b3 w

Proprietary Version: 2.1.0
sm serw[0] {w,r,e,s} >
) sm_serw[l{dj
< g g 3]
— " P e Bkl sm b0
— = 52 :: —
- |B Sm_serwl5]
> p| _Em _SETWIo] :
> M sm serwl7]
B« >
T sm_serwl[0
sm serwll
e " - W[3
L > Sm_serw
- 5 > - sm bl
—» 8 Sm_serwlb
— lm ST W
— > sm_serwl7/
—»]
— q| sm serwl[0
sm serwll
— —>
L » pi sm b3
—» P
:: |g > — kil
—»] q smjserw[7
—» L [o
L > sm_serw
sm serwll
—p S sm b2
— —» >
—» —»
—» 8
» P! < 2
— € > 8
—» P
— P
.IIIIIVIIII.
pimm > = Scratch :
= Memory E
sm i o ¥ 2 » (SM) -
- Fesmmnpunny
1
0]
8

Doc. Number: 501-0004

Figure 3.6 — SM ACU Block Diagram

28

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

The Scratch Memory (SM) consists of the SM RAM and the SM ACU. The SM ACU contains 8
cached sets of start (S), end (E), read (R), and write (W) registers for quick access by the Data
Memory ACU units. The SM RAM holds 64 additional pointer sets which can be easily recalled
to the cache. The SM RAM is 64 bits wide and handles a {S,E,R,W} set in a single cycle.

3.71 SM SERW

Each of the 4 Data Memory ACU units (BO, B1, B2, B3) is provided with an individually
selectable set of associated pointers from the cache. The syntactic tokens for these are
sm_serw[0] through sm_serw[7].

3.7.2 SM A register

description token(s)
the SM ACU Address (to SM RAM) | Sm_2a
register

typical use (see 4.2.4.8.4) sm_a=pimm

Table 3.37 — SM A Register Syntax

3.7.3 SM I register

description token(s)

The SM ACU Cache Write Index | S™_i
register specifies the cached
register set to be written. (valid: 0-7)

typical use (see 4.2.4.7.4) sm_i=0

Table 3.38 — SM | Register Syntax

Doc. Number: 501-0004 29

NS85 Programmer Reference Manual v2_1.doc P rO p rleta ry

3.7.4 SM S register

description token(s)

the pointer cache SM S register set | S™_S

Table 3.39 — SM S Register Set Syntax

description token(s)
the program immediate register pimm
pointer data from SM memory sm

typical use (see 4.2.4.7.4) sm_s (&sm)

Table 3.40 — SM S Register Set Inputs

3.7.5 SM E register

description token(s)

the pointer cache SM E register set | S™_©

Table 3.41 — SM E Register Set Syntax

description token(s)
the program immediate register pimm
pointer data from SM memory sm

typical use (see 4.2.4.7.4) sm e (&sm)

Table 3.42 — SM E Register Set Inputs

Doc. Number: 501-0004 30

Version: 2.1.0

Proprietary

NS85 Programmer Reference Manual v2_1.doc

3.7.6 SM R register

the pointer cache SM R register set

description token(s)
sSm r

Table 3.43 — SM R Register Set Syntax

the ACU3 read pointer register

description token(s)

the program immediate register pimm

pointer data from SM sm

the ACUO read pointer register b0_r

the ACU1 read pointer register bl r

the ACU2 read pointer register b2_r
b3 r

typical use (see 4.2.4.7.7)

sm r(&b0 r)

Table 3.44 — SM R Register Set Inputs

Doc. Number: 501-0004 31

Version: 2.1.0

Proprietary

NS85 Programmer Reference Manual v2_1.doc

3.7.7 SM W register

the pointer cache SM W register set

description token(s)
sm w

Table 3.45 — SM R Register Set Syntax

the ACUS3 write pointer register

description token(s)

the program immediate register pimm

pointer data from SM sm

the ACUO write pointer register b0_w

the ACU1 write pointer register bl w

the ACU2 write pointer register b2_w
b3 w

typical use (see 4.2.4.7.7)

sm w(&b0 w)

Table 3.46 — SM W Register Set Inputs

Doc. Number: 501-0004 32

Version: 2.1.0

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

3.7.8 SM BO bus

description token(s)
sm b0

read-back bus for pointer data
cached in the SM register sets to the

ACUO unit

Table 3.47 — SM B0 Bus Syntax
description token(s)
pointer set (s, e, r, and w registers) | Sm_serw [0]
number 0 from the SM cache
cached pointer set number 1 sm_serw[1]
cached pointer set number 2 sm_serw[2]
cached pointer set number 3 sm_serw[3]
cached pointer set number 4 sm_serw[4]
cached pointer set number 5 sm_serw[5]
cached pointer set number 6 sm_serw[6]
cached pointer set number 7 sm_serw([7]
typical use (see 4.2.4.7.4) sm_b0 (&sm_serwl[0])

Table 3.48 — SM B0 Bus Inputs

Doc. Number: 501-0004 33

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

3.7.9 SM B1 bus

description token(s)
sm bl

read-back bus for pointer data
cached in the SM register sets to the

ACU1 unit

Table 3.49 — SM B1 Bus Syntax
description token(s)
pointer set (s, e, r, and w registers) | Sm_serw [0]
number 0 from the SM cache
cached pointer set number 1 sm_serw[1]
cached pointer set number 2 sm_serw[2]
cached pointer set number 3 sm_serw[3]
cached pointer set number 4 sm_serw[4]
cached pointer set number 5 sm_serw[5]
cached pointer set number 6 sm_serw[6]
cached pointer set number 7 sm_serw([7]
typical use (see 4.2.4.7.4) sm_bl (&sm_serwl[0])

Table 3.50 — SM B1 Bus Inputs

Doc. Number: 501-0004 34

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

3.7.10 SM B2 bus

description token(s)
sm b2

read-back bus for pointer data
cached in the SM register sets to the

ACU2 unit

Table 3.51 — SM B2 Bus Syntax
description token(s)
pointer set (s, e, r, and w registers) | Sm_serw [0]
number 0 from the SM cache
cached pointer set number 1 sm_serw[1]
cached pointer set number 2 sm_serw[2]
cached pointer set number 3 sm_serw[3]
cached pointer set number 4 sm_serw[4]
cached pointer set number 5 sm_serw[5]
cached pointer set number 6 sm_serw[6]
cached pointer set number 7 sm_serw([7]
typical use (see 4.2.4.7.4) sm_b2 (&sm_serwl[0])

Table 3.52 — SM B2 Bus Inputs

Doc. Number: 501-0004 35

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

3.7.11 SM B3 bus

description token(s)
sm b3

read-back bus for pointer data
cached in the SM register sets to the

ACUS3 unit

Table 3.53 — SM B3 Bus Syntax
description token(s)
pointer set (s, e, r, and w registers) | Sm_serw [0]
number 0 from the SM cache
cached pointer set number 1 sm_serw[1]
cached pointer set number 2 sm_serw[2]
cached pointer set number 3 sm_serw[3]
cached pointer set number 4 sm_serw[4]
cached pointer set number 5 sm_serw[5]
cached pointer set number 6 sm_serw[6]
cached pointer set number 7 sm_serw([7]
typical use (see 4.2.4.7.4) sm_b3 (&sm_serw[0])

Table 3.54 — SM B3 Bus Inputs

Doc. Number: 501-0004 36

NS85 Programmer Reference Manual v2_1.doc PrOprIetary Ve rSIOﬂ 2.1 .0

3.8 ACU 0 Data Memory & ACU Resources

start
sm b0 >
;’
e | P —»
_’ |O
pimm ol b *2 —f
— Pointer
end > Modification b0_p
Calculator
= L ——
Ly 2 ——
sm bo0
al0_r
pimm g
—»
—” lH —P
—» “’
+pimm
A
sm b0
N bO_r>
a0 r
il;m — S b0_w>
_pimng »
—»
a0 r
;’
mO0 r ¥T4
;’
ml r bo_a FEEEEEEEEE
— 7 ». Data =
pimm o bo_d = Memory = b0 bus
4’ — y n _
" » w0 I
bl_bus "peEEEEEENYE
b2 bus
b3 bus

Figure 3.7 — B0 ACU & Memory Block Diagram

Doc. Number: 501-0004 37

NS85 Programmer Reference Manual v2_1.doc P rO p rleta ry

3.8.1 ACUO C register

description token(s)
the ACUO c register pair (circular | P0_¢

start and end addresses)

the ACUO circular end address | PO_¢
register, available only for testing in
the conditional (“if’) instruction

Table 3.55 — ACUO C Register Syntax

description token(s)
the program immediate register pimm
Cached pointer data from SM Sm

typical use (see 4.2.4.7.7) b0_c (&sm)

Table 3.56 — ACUO C Register Inputs

3.8.2 ACUO R register

description token(s)
the ACUQO r register (read ptr) bo_x

Table 3.57 — ACUO R Register Syntax

Doc. Number: 501-0004 38

Version: 2.1.0

NS85 Programmer Reference Manual v2_1.doc

typical use (see 4.2.4.7.7)

Proprietary
description token(s)
the program immediate register pimm
cached pointer data from SM sm
the ALUO register bus a0_r
pointer as modified by ACUO b0_p
b0 r(&sm)

Table 3.58 — ACUO R Register Inputs

3.8.3 ACUO W register

the ACUOQ w register (write ptr)

description token(s)
b0 w

Table 3.59 — ACUO W Register Syntax

typical use (see 4.2.4.7.7)

description token(s)

the program immediate register pimm

cached pointer data from SM sm

the ALUO register bus a0_r

pointer as modified by ACUO b0_p
b0 w(&sm)

Table 3.60 — ACUO W Register Inputs

Doc. Number: 501-0004 39

Version: 2.1.0

NS85 Programmer Reference Manual v2_1.doc

Proprietary

3.8.4 ACUO D register

description token(s)
b0 d

the ACUQO d register (write data)

Table 3.61 — ACUO D Register Syntax

description token(s)
the program immediate register pimm
the ALUO register bus a0_r
the MACO register bus m0_r
the MAC1 register bus ml_r
pointer as modified by ACUO b0_p
Data Memory Bus 1 bl bus
Data Memory Bus 2 b2_bus
Data Memory Bus 3 b3_bus
b0_d (&pimm)

typical use (see 4.2.4.7.7)

Table 3.62 — ACUO D Register Inputs

3.8.5 ACUO Post-modified Pointer

description token(s)
b0 p

pointer as modified by ACUO

typical use (see 4.2.4.8.5)

b0 p =b0 r + 2

Table 3.63 — ACUO Post-modified Pointer

Doc. Number: 501-0004 40

Version: 2.1.0

NS85 Programmer Reference Manual v2_1.doc PrOprIetary Ve rSIOﬂ 2.1 .0

3.9 ACU 1 Data Memory & ACU Resources

start
sm bl >
e | P —»
_— lH
pimm ol by 2 —>
—P Pointer
end > Modification bl p
Calculator
>t
Ly 2 ——
sm bl
al0_r
pimm E
—
— ¥ lH —»
—» “’
+pimm
A
sm bl
— bl_r>
a0 r
— e
—»
a0 r
4—’
m0 r ¥TJ
4—’
ml_r bl_a »'lllllllll.
ﬂ, o | bld ’E Mg;tgry E bl bus
—» |Q.. : #1 u
bo_bus SpgpEEEEEEEE
b2 bus
b3 bus

Figure 3.8 — B1 ACU Block Diagram

Doc. Number: 501-0004 41

NS85 Programmer Reference Manual v2_1.doc P rO p rleta ry

3.9.1 ACU1 C register

description token(s)
the ACU1 c register pair (circular bl _c

start and end addresses)

the ACU1 circular end address | P1_e
register, available only for testing in
the conditional (“if’) instruction

Table 3.64 — ACU1 C Register Syntax

description token(s)
the program immediate register pimm
Cached pointer data from SM Sm

typical use (see 4.2.4.7.9) bl c(&sm)

Table 3.65 — ACU1 C Register Inputs

3.9.2 ACU1 R register

description token(s)
the ACU1 rregister (read ptr) bl =r

Table 3.66 — ACU1 R Register Syntax

Doc. Number: 501-0004 42

Version: 2.1.0

NS85 Programmer Reference Manual v2_1.doc

typical use (see 4.2.4.7.9)

Proprietary
description token(s)
the program immediate register pimm
cached pointer data from SM sm
the ALUO register bus a0_r
pointer as modified by ACU1 bl p
bl r(&sm)

Table 3.67 — ACU1 R Register Inputs

3.9.3 ACU1 W register

the ACU1 w register (write ptr)

description token(s)
bl w

Table 3.68 — ACU1 W Register Syntax

typical use (see 4.2.4.7.9)

description token(s)

the program immediate register pimm

cached pointer data from SM sm

the ALUO register bus a0_r

pointer as modified by ACU1 bl p
bl w(&sm)

Table 3.69 — ACU1 W Register Inputs

Doc. Number: 501-0004 43

Version: 2.1.0

NS85 Programmer Reference Manual v2_1.doc

Proprietary

3.9.4 ACU1 D register

description token(s)
bl d

the ACU1 d register (write data)

Table 3.70 — ACU1 D Register Syntax

description token(s)
the program immediate register pimm
the ALUO register bus a0_r
the MACO register bus m0_r
the MAC1 register bus ml_r
pointer as modified by ACU1 bl p
Data Memory Bus 0 b0_bus
Data Memory Bus 2 b2_bus
b3 bus

Data Memory Bus 3

typical use (see 4.2.4.7.9)

bl d(&b0 bus)

Table 3.71 — ACU1 D Register Inputs

3.9.5 ACU1 Post-modified Pointer

description token(s)
bl p

pointer as modified by ACU1

typical use (see 4.2.4.8.6)

bl p=D>blr+1

Table 3.72 — ACU1 Post-modified Pointer

Doc. Number: 501-0004 44

Version: 2.1.0

NS85 Programmer Reference Manual v2_1.doc PrOprIetary Ve rSIOﬂ 2.1 .0

3.10 ACU 2 Data Memory & ACU Resources

start
sm b2 >
o | T —
_’ lt\) +2
pimm a —> —»
—P> Pointer
end > Modification b2 p
Calculator
= L ——
Ly 2 ——
sm b2
al0_r
pimm g
—»
— ¥ ' —>
—» “’
+pimm
A
sm b2
— b2_r>
a0 r
— o'
—»
a0 r
;’
m0 r ¥TJ
;’
ml_r b2_a »'lllllllll.
N I ' u Data :
ﬂ» E; b2 d ’E Memory = b2 bus
g " B
L o . "
bo_bus EEEEEEEENE
bl bus
b3 bus

Figure 3.9 — B2 ACU Block Diagram

Doc. Number: 501-0004 45

NS85 Programmer Reference Manual v2_1.doc P rO p rleta ry

3.10.1 ACU2 C register

description token(s)
the ACU2 c register pair (circular b2_c

start and end addresses)

the ACU2 circular end address | P2_¢
register, available only for testing in
the conditional (“if’) instruction

Table 3.73 — ACU2 C Register Syntax

description token(s)
the program immediate register pimm
Cached pointer data from SM Sm

typical use (see 4.2.4.7.11) b2_c (&sm)

Table 3.74 — ACU2 C Register Inputs

3.10.2 ACU2 R register

description token(s)
the ACU2 r register (read ptr) b2 r

Table 3.75 — ACU2 R Register Syntax

Doc. Number: 501-0004 46

Version: 2.1.0

NS85 Programmer Reference Manual v2_1.doc

typical use (see 4.2.4.7.11)

Proprietary
description token(s)
the program immediate register pimm
cached pointer data from SM sm
the ALUO register bus a0_r
pointer as modified by ACU2 b2_p
b2 r(&sm)

Table 3.76 — ACU2 R Register Inputs

3.10.3 ACU2 W register

the ACU2 w register (write ptr)

description token(s)
b2 w

Table 3.77 — ACU2 W Register Syntax

typical use (see 4.2.4.7.11)

description token(s)

the program immediate register pimm

cached pointer data from SM sm

the ALUO register bus a0_r

pointer as modified by ACU2 b2_p
b2 w(&sm)

Table 3.78 — ACU2 W Register Inputs

Doc. Number: 501-0004 47

Version: 2.1.0

NS85 Programmer Reference Manual v2_1.doc

Proprietary

3.10.4 ACU2 D register

description token(s)
b2 d

the ACU2 d register (write data)

Table 3.79 — ACU2 D Register Syntax

description token(s)
the program immediate register pimm
the ALUO register bus a0_r
the MACO register bus m0_r
the MAC1 register bus ml_r
pointer as modified by ACU2 b2 p
Data Memory Bus 0 b0_bus
Data Memory Bus 1 bl bus
b3 bus

Data Memory Bus 3

typical use (see 4.2.4.7.11)

b2 d(&pimm)

Table 3.80 — ACU2 D Register Inputs

3.10.5 ACU2 Post-modified Pointer

description token(s)
b2 p

pointer as modified by ACU2

typical use (see 4.2.4.8.7)

b2 p =b2 w + 2

Table 3.81 — ACU2 Post-modified Pointer

Doc. Number: 501-0004 48

Version: 2.1.0

NS85 Programmer Reference Manual v2_1.doc PrOprIetary Ve rSIOﬂ 2.1 .0

3.11 ACU 3 Data Memory & ACU Resources

start
sm b3 >
o | T —
_’ lw +2
pimm a —> —»
—P Pointer
end > Modification b3 _p
Calculator
= L ——
Ly 2 ——
sm b3
al0_r
pimm g
—»
— ¥ ' —>
—» “’
+pimm
A
sm b3
— b3_r>
a0 r
— o'
—»
a0 r
;’
m0 r ¥IJ
;’
ml_r b3_a FEEEEEEEEE,
pimm' ». Data =
—— o b3 d =+ Memory = b3 bus
— - > gy o
L o . "
bo_bus SpgpEEEEEEEE
bl bus
b2 bus

Figure 3.10 — B3 ACU Block Diagram

Doc. Number: 501-0004 49

NS85 Programmer Reference Manual v2_1.doc P rO p rleta ry

3.11.1 ACU3 C register

description token(s)
the ACU3 c register pair (circular | P3_¢

start and end addresses)

the ACU3 circular end address | P3_¢
register, available only for testing in
the conditional (“if’) instruction

Table 3.82 — ACU3 C Register Syntax

description token(s)
the program immediate register pimm
Cached pointer data from SM Sm

typical use (see 4.2.4.7.13) b3_c (&sm)

Table 3.83 — ACU3 C Register Inputs

3.11.2 ACU3 R register

description token(s)
the ACU3 r register (read ptr) b3 =

Table 3.84 — ACU3 R Register Syntax

Doc. Number: 501-0004 50

Version: 2.1.0

NS85 Programmer Reference Manual v2_1.doc

typical use (see 4.2.4.7.13)

Proprietary
description token(s)
the program immediate register pimm
cached pointer data from SM sm
the ALUO register bus a0_r
pointer as modified by ACU3 b3_p
b3 r(&sm)

Table 3.85 — ACU3 R Register Inputs

3.11.3 ACU3 W register

the ACU3 w register (write ptr)

description token(s)
b3 w

Table 3.86 — ACU3 W Register Syntax

typical use (see 4.2.4.7.13)

description token(s)

the program immediate register pimm

cached pointer data from SM sm

the ALUO register bus a0_r

pointer as modified by ACU3 b3_p
b3 w(&sm)

Table 3.87 — ACU3 W Register Inputs

Doc. Number: 501-0004 51

Version: 2.1.0

NS85 Programmer Reference Manual v2_1.doc

Proprietary

3.11.4 ACU3 D register

description token(s)
b3 d

the ACU3 d register (write data)

Table 3.88 — ACU3 D Register Syntax

description token(s)
the program immediate register pimm
the ALUO register bus a0_r
the MACO register bus m0_r
the MAC1 register bus ml_r
pointer as modified by ACU3 b3_p
Data Memory Bus 0 b0_bus
Data Memory Bus 1 bl bus
Data Memory Bus 2 b2_bus
b3_d (&pimm)

typical use (see 4.2.4.7.13)

Table 3.89 — ACU3 D Register Inputs

3.11.5 ACU3 Post-modified Pointer

description token(s)
b3 p

pointer as modified by ACU3

typical use (see 4.2.4.8.8)

b3 p=b3 w+ 1

Table 3.90 — ACU3 Post-modified Pointer

Doc. Number: 501-0004 52

Version: 2.1.0

NS85 Programmer Reference Manual v2_1.doc

Proprietary

3.12 Pipeline Information

Version: 2.1.0

The DSP has a five stage pipeline operation, as illustrated below. An explanation follows.

PIPELINE STAGES

-

| i i
: -
\ PC 1 |
: PROGRAM < Program unit : ﬁl
; ME MORY T
\ 1 m,
E PC_READ i 35
: < I
]]]
]]]

M

m

_|

(@]

T

L48 bitinstruction word
]

w]

m

r=-=-=-=-=F======= 1 O

| DECODE ! S

: ! m

I
0g [|4

i

R B
31NO03X3

i

Doc. Number: 501-0004

_‘_l

_rl

i 2
_‘_l

: i1 BO B1 B2 B3
]] 17 ME M ME M ME M ME M
- SO
L L L L -
>
_|
>
m
LA S
Ly . > > z
@]
Esoausll| B1BUS|J| B2 BUS B3 BUS m
wn

Figure 3.11 - Pipeline structure

53

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

3.12.1 Pre-Fetch Stage

The Pre-Fetch stage represents the opportunity for the assertion, by the Program Control Unit
(PCU), of a valid Program Memory Address to the program memory.

The program unit controls the program fetch and issue and maintains the Program Counter
(PC). Every cycle the program unit determines if there is a need to fetch a new instruction from
the program memory. The program unit then asserts a read signal to the memory and uses the
PC as the address to the memory. This read request is issued in a pipeline stage that is called
“Pre-Fetch stage”.

3.12.2 FETCH Stage

The Fetch stage represents the opportunity for the assertion of valid Program Data by the
program memory, and its capture into the Instruction Register of the PCU.

The memory has an inherent one cycle read latency. A read request issued in a [Pre-Fetch]
cycle “N” will get the corresponding data from the memory in cycle “N+1”. In the “fetch stage” of
the pipeline, the program memory outputs the instruction corresponding to the read request that
happens in the previous “pre-fetch stage”.

3.12.3 DECODE Stage

The instruction fetched from the program memory in the “Fetch stage” of the pipeline is decoded
in the “Decode stage”.

A separate “Decode Stage” enables NS85 DSP to determine to decode the instruction with no
effect on the overall chip timing. There will be no decode related timing problems in the
hardware chip implementation if complex instructions (requiring complex decodes) are added in
the future versions of this chip.

3.12.4 EXECUTE Stage

The Execute stage of the pipeline is where all the functional operation is executed. All the units
(ALUO, MACO, MAC1, SM, BO, B1, B2, B3) execute the function that is specified by the decoded
instruction. All aspects of the functions units operation are controlled during this stage.

Execute stage operations include the setting up of the selects for all the multiplexers in the
functional units, as specified by the various source code “Register-See” clauses of the decoded
instruction. At the end of this pipeline stage the appropriate registers in the functional units are
updated based on the write enables specified in the decoded instruction. (The writes are
specified at the source code level by the “Register Update” clause.) The execute stage also
evaluates the branch condition to determine if there is going to be a branch mis-predict. The
execute stage also issues the data memory access signals (read, write, address, write data)
forward into the pipeline.

Doc. Number: 501-0004 54

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

3.12.5 DMEM Stage

The DMEM stage represents the opportunity for the assertion of valid Data Memory data values
on the various data busses (b0-b3) and its capture into the PCU.

The data memory has an inherent one cycle delay. A read request issued in a cycle “N” will get
the corresponding data from the memory in cycle “N+1”. At the end of this pipeline stage we
also register the data from the memory. The programmer can use the data that the memory
returns in the DM pipeline stage itself. The data that is returned from the memory will be
maintained till another access happens to the same data memory. A programmer can set up a
read to the data memory in cycle “N” and use the data from cycle “N+1" till cycle “N+M” where M
>= 2 as long as there is no new read request to memory. If the programmer does consecutive

reads to the memory in cycle “N”, “N+17,..., he would use the corresponding data from the
memory in cycle “N+1, “N+2”...

3.12.6 Pipeline Operation

In the ideal case, each of the pipeline stages is busy during a machine cycle: when some
instruction is being decoded, the next instruction is being fetched from the program memory and
the memory is getting the address for the instruction after that one; simultaneously the previous
instruction to the one being decoded is executing, and the one before that is accessing data
memory. There are some exceptions to that description, however.

In the case of a branch instruction where the branch is to be taken, part of the pipeline (which is
a “branch not taken” based design) must be flushed and restarted on the new instruction
stream. The branch penalty is 3 cycles.

In the case of a repeat instruction, the PCU will stop the Pre-Fetch and Fetch stages until the
repeat operation reaches the point of exhaustion and additional instructions will be required.
The stopped stages are restarted in a manner which guarantees that there will be no bubbles in
the pipeline.

So, what does it look like in time? The basic pipeline sequencing is illustrated in Figure 3.12,
below. The pipeline in the case of a branch is illustrated in Figure 3.13. Figure 3.14 illustrates
the pipeline as executes a repeated instruction.

Doc. Number: 501-0004 55

NS85 Programmer Reference Manual v2_1.doc Propnetary VerSIon 21 0
cycle n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9
MCIk
PrAdr PAIK] PA[k+1] PA[k+2] PA[k+3] PA[k+4] PA[K+5] PA[k+6] PAk+7] PA[k+8] PA[k+9]

PREFETCH
PrDat PD[k-1] PDIK] PD[k+1] PD[k+2] PD[k+3] PD[k+4] PD[k+5] PD[k+6] PD[k+7] PD[k+8]
FETCH
InReg Inst[k-2] Inst[k-1] Instlk] Inst[k+1] Inst[k+2] Inst[k+3] Inst[k+4] Inst[k+5] Inst[k+6] Inst[k+7]
DECODE
OP OP[k-3] OP[k-2] OP[k-1] OPIK] OP[k+1] OP[k+2] OP[k+3] OP[k+4] OP[k+5] OP[k+6]
Cntls Cti[k-3] Ctik-2] Ctifk-1] ikl Ctifk+1] Cti[k+2] Ctifk+3] Ctifk+4] Cti[k+5] Cti[k+6]
Pimm* PCRI[k-3] PCR[k-2] PCR[k-1] PCRIk] PCR[k+1] PCR[k+2] PCR[k+3] PCR[k+4] PCR[k+5] PCRIk+6]
Reqg Reg[k-4] Reg[k-3] Reg[k-2] Reg[k-1] Realkl Reg[k+1] Reg[k+2] Reg[k+3] Reg[k+4] Reg[k+5]
DaAdr DA[k-4] DA[k-3] DA[k-2] DA[k-1] DAIK] DA[k+1] DA[k+2] DALk+3] DA[k+4] DA[k+5]
EXECUTE
DaDat DD[k-4] DD[k-3] DD[I§<-2] DD[;k-1] I DDJk] I DD[k+1] DD[k+2] DD[k+3] DD[k+4] DD[k+5]
: . DMEM
* Pimm, Config & Repeat
Figure 3.12 - Pipeline Operation
Doc. Number: 501-0004 56

NS85 Programmer Reference Manual v2_1.doc PrOprIetary Ve rSIOﬂ 2. 1 .0
cycle n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9
MClk
EEEEEEER
PrAdr PAIK] PA[k+1] PA[k+2] PAk+3] B, PAIX] PA[x+1] PA[x+2] PA[x+3] PA[x+4] PA[x+5]
EEEERER
PREFETCH i
PrDat PD[k-1] PDIKI PD[k+1] PD[k+2] ’ PD[k+3] PDIk+3] PD[k+4] PD[k+5] PD[k+6] PD[k+7]
FETCH
InReg Inst[k-2] Inst[k-1] Instlkl FLUSH FLUSH FLUSH Instlk+31 Inst[k+4] Inst[k+5] Inst[k+6]
EEEERERER
DECODE
EEEEEEER
OP OP[k-3] OP[k-2] OP[k-1] OPIK] FLUSH FLUSH FLUSH OPIk+3] OP[k+4] OP[k+5]
Cntls Ctl[k-3] Ctlk-2] Ctlk-1] Ctirkl FLUSH FLUSH FLUSH Ctilk+31 Ctilk+4] Ctl[k+5]
Pimm* PCR[k-3] PCR[k-2] PCR[k-1] PCRIK] PCRIk+3 3 PCRLk+4] | PCR[k+5]
Reg Reg[k-4] Reg[k-3] Reg[k-2] Reglk-1] Redlkl Realk+3] § Reglk+4]
DaAdr DA[k-4] DA[k-3] DA[k-2] DA[k-1] DAIKI DAIk+31 I DA[k+4]
EXECUTE
DaDat DD[k-4] DD[k-3] DD[k-2] DD[k-1] I DDIk+3 DD[k+4]
EEEEEENER
DMEM

* Pimm, Config & Repeat

Doc. Number: 501-0004

57

Instlk]: 1£ (TRUE) pc =

Figure 3.13 — Effect of Branch on the Pipeline

{X}; /* branch taken */

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

cycle n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9
MClk

PrAdr PAIKI PALk+1] PATk+2] PA[k+3] PA[k+4] PA[k+5] PA[k+6] PA[k+7]

PREFETCH EEEERERER EEEEEEEEEEEEREREDR
PrDat PD[k-1] PDIKI PD[k+1] / PDIk+21 PD[k+3] PD[k+4] PD[k+5] PD[k+6]
FETCH /
InReg Inst[k-2] Inst[k-1] Instlkl Instlk+11 1 Instk+2] Inst[k+3] Inst[k+4] Inst[k+5]
DECODE
OoP OP[k-3] OP[k-2] OP[k-1] OPIKI OP[k+1] OP[k+1] OP[k+1] OP[k+2] OP[k+3] OP[k+4]
Cntls Ctl[k-3] Ctl[k-2] Cti[k-1] Ctilkl Ci[k+1] Ctl[k+1] Cil[k+1] Ctl[k+2] Cti[k+3] Cti[k+4]
Pimm?* PCR[k-3] PCR[k-2] PCR[k-1] PCRIKI | PCR[k+1]~ | | RCRIk+1] | |. "PCR[k+1] | PCRIk+2] | PCR[k+3] | PCR[k+4]
Req Reg[k-4] Reg[k-3] Reg[k-2] Reglk-1] I Realkl | Reg[k+1] Reglk+1] Regik+1] Reglk+2] || Reg[k+3]
DaAdr DA[k-4] DA[K-3] DA[k-2] DA[k-1] DAIKI] DA[k+1] DAk+1] DAk*1] DA[k+2] DA[k+3]
EXECUTE
DaDat DDk-4] DD[k-3] DD[k-2] DD[k-1] | DDIk] | DD[k+1] DD[k+1] DD[k*1] DD[k+2] DD[k+3]
DMEM 5 E E
* Pimm, Config & Repeat Inst[k]: repeat = 0x3;
Figure 3.14 - Effect of Repeat on the Pipeline
Doc. Number: 501-0004 58

NS85 Programmer Reference Manual v2_1.doc Propnetary VerSIon . 2 . 1 . 0

3.12.7 Hazards

As shown, the PCU controls the pipeline to ensure proper activity at the machine level. Life is
not all good and simple, however! While read cycles to and write cycles from data memory are
managed by the PCU, the data utilised in those cycles is not pipelined by the machine. Instead
they are fully managed by the programmer. The current instruction might include a write to
memory of the data produced by the previous instruction and/or a pre-read of data from memory
to a module input registers in preparation for the following instruction.

Because of the pipelined nature of the machine, there are hazards. What hazards are there in
programming? Madness, at the very least. There are three types of machine hazards: control
hazards, structural hazards and data hazards.

3.12.71 Control Hazards

Control hazards occur when instructions, such as branch which utilises the PC, are pipelined.
This type of hazard was illustrated above, in Figure 3.13, and examination will show the loss of
efficiency which results. The PCU deals with control hazards. The programmer should be aware
of them. Remember: this machine as designed is a “branch not taken” architecture; taking a
branch means taking a penalty.

3.12.7.2 Structural Hazards

Structural hazards are cases where hardware resource conflicts arise because of pipelining.
E.g. pushing the PC onto the stack in the same cycle that a value is being popped from the
stack represents a structural hazard: generally stacks cannot be pushed and popped at the
same time. The architecture and instruction set of the DSP have been designed to prevent, or at
least minimize, structural hazards. No structural hazard is presently illustrated in Figure 3.15.
(The illustration will be updated later.)

As structural hazards are identified, the assembler may be upgraded provide some help.

3.12.7.3 Data Hazards

Data hazards involve interactions between or within instructions with respect to data. They arise
when the pipelined operation of one or two instructions causes data timing issues to occur. E.g.
attempting to read a data item before it has been written by a previous instruction. (Note: such
data hazards can be intentionally exploited by the programmer in the optimization of the code.)
In this DSP, data hazards arise primarily because the machine registers are updated at the end
of the Execute cycle and memory data is valid one cycle later, at the end of the DMEM cycle.

The hazard is not presently illustrated in Figure 3.16. (The illustration will be updated later.) The

programmer is fully responsible for avoiding or otherwise resolving, "data hazards” by careful
programming.

Doc. Number: 501-0004 59

NS85 Programmer Reference Manual v2_1.doc Propnetary VerSIon 21 0
cycle n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9
MCIk
PrAdr PAIK] PA[k+1] I_ PA[k+2] PA[k+3] l PA[k+4] PA[k+5] || PATk+6] PATk+7] | PA[k+8] PA[k+9]
PREFETCH |
L | e — i —
PrDat PD[k-1] DI} PDIM | PD[k+2] ')[k: . PDI" Fonios T [k '\‘1_| PD" 7] PD[k+8]
-_— _ _h - - — — — — - _— -
InReg Inst[k-2] INSTK-1] § Instikl | INSTK+1] i INSTK+2] | INSYK+3] | INSTK+4] INSTK+5| H INSTK+b] Inst[k+7]
: DE : ; : :
—_— 4~ — — = E W _ - — —_ = = = — —
OoP OP[k-3] (B 1] PIk] AP[k+ OP = OP[k 3] [k+a? k+5] OP[k+6]
—_ — - —_ —_— = - e
Cntls Ctl[k-3] 2] [ke . _.a . ke U] . Cu. _+5] Ctl[k+6]
Pimm* PCRIk-3] peeieo1 i peeie 41 B ooona B pepra | pepivan | nenne.or 1 boRivaa1l 1 boRivis) PCRIk+6]
Reqg Reglk-4] Reglk-3] Reglk2] | Reglk1l | Reari | Regk+1] Reg[k+2] Reg[k+3] l Reglk+4] || Reg[k+5]
[RE— — — — . — - - N — - - I
DaAdr DALk: [[k-3] JA[k-2] D/ 1] A Al Al 1] DA’) +L DAk 1] Dt +5]
_—) — —— — — — A — —
EX' U7 o
DaDat | UU[IK-‘H DUIK-9] UULI;K-AJ | UUL;K-IJ i L)UéIKI i UUlK;"'IJ UU[P""AJ | LJLJU""JJ uuuéﬂu | DD[k+5]
' ' { DMEM ' 5

* Pimm, Config & Repeat

Figure 3.15 - Structural Hazard lllustration

Doc. Number: 501-0004 60

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0
cycle n n+1 n+2 n+3 n+4 n+5 n+6 n+7 n+8 n+9
MCIk
PrAdr PAIK] PA[k+1] PA[k+2] PA[k+3] PA[k+4] PA[k+5] PALk+6] PALk+7] PALk+8] PA[k+9]
PREFETCH
PrDat PD[k-1] PDIkI PD[k+1] PD[k+2] PP la ule aRRIEHA PD[k+3] PD[k+6] PD[k+7] PD[k+8]
FETCH E b1 —d -
InR Inst[k-2 Inst[k-1 Inst{k+1 ' Register Instlk+4 Inst[k+5 Inst{k+6 Inst[k+7
nReg nst[k-2] nst[k-1] Instrkl nst[k+1] : Update nst[k+4] nst[k+5] nst[k+6] nst[k+7]
DECODE Sp enEEEEN
.. ’. :IIIIIIIIIII:
OP OP[k-3] OP[k-2] OP[k-1] OPIkI or Ml OP[k+2] « b0 memory 3 OP[k+5] OP[k+6]
— b . Data .
Cntls Ctik-3] Ctilk-2] Ctifk-1] Ctirkl :: ,ﬂfk+1] Ctifk+2] = Available !] Ctilk+5] Cti[k+6]
Pimm* PCRLk-3] | PCRLk-2] | PCRk-1] PCRIK] I ;PCR[k+1] PCRk+2] | Pep o pee wasad] | PCRk+5] | PCR[k+6]
Req Reg[k-4] Reg[k-3] Reg[k-2] Reglk-1] Realk] Reg[k+1 l,* :‘xéé[k+2] Reg[k+3] Reglk+4] || Reglk+5]
DaAdr DA[k-4] DA[k-3] DA[k-2] DA[k-1] DAIK] ’Df\:: ;f]‘ DA[k+2] DA[k+3] DA[k+4] DA[k+5]
EXECUTE o
DaDat DD[k-4] DD[k-3] DD[k-2] DD[k-1] r DDIkI I DD[K+1] DD[k+2] DD[k+3] DD[k+4] DD[K+5]
DMEM
Instlk]: b0_d (&pimm), b0 bus=*b0 r, b0 p = b0 r + 1,

* Pimm, Config & Repeat

Doc. Number: 501-0004

61

bl d(&b0 _bus), nop, bl d(next);

Figure 3.16 - Data Hazard lllustration

NS85 Programmer Reference Manual v2_1.doc Propnetary Vers|0n . 2 . 1 . 0

3.13 Instruction Types

The instructions which deal with the global operation of the DSP are categorized as “Control
Instructions” and are loosely grouped into the “Configuration Instructions” and “Program Flow
Instructions” sub-categories.

Instructions that configure or utilise either the data memories or the SM are called “Data Flow
Control Instructions”.

The compute modules (ALUO, MACO, and MAC1) operate in parallel. However, to limit the
instruction width and due to data bus limitations, some compromises have been made, the
result being that not all conceivable parallel operations are allowed. Instructions that control the
operation of the CU core compute modules are generally categorized as “Compute
Instructions”. The instructions are further sub-grouped according to the compute modules
involved.

Doc. Number: 501-0004 62

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

4 Syntax & Language Constructs

4.1 Introduction

The DSP uses a truncated VLIW architecture controlled by 48 bit instructions. There are no on-
chip resource management facilities: the programmer is responsible for all aspects of execution.
With this in mind, the assembly language of the NS85 DSP has been designed to ease the task
of the programmers: the creation, debugging, and documentation of the code.

The syntax of the NS85 DSP assembly language is based on the ‘c’ programming language. It
must be stressed, however, that it is not ‘c’. The language has the following characteristics:

e Comments, both the c-style (bracketed with “/*” and “*/” tokens) and the c++ style
(from the “//” token to the end-of-line) are allowable between instructions. NB:
comments are not presently allowed inside instructions — massive quantities of
comments are expected to be found between instructions.

e Symbolics are now supported: address references may be provided as identifiers or
hexadecimal numbers.

¢ An “identifier” must start with an alpha character or an underscore character [a-zA-Z]
and subsequent characters can be alpha characters, underscores, or numerals [a-zA-
Z 0-9].

e A program has no blocking or scoping.

e Instructions are terminated by a semicolon ‘;’ character.

e The ‘,” comma character is generally used to separate clauses within the instruction.
NB: however that the comma is also used to separate sub-clauses within clauses.

o Clauses consisting of like items are generally insensitive to the ordering of items within
the clause.

e Whitespace (tabs, spaces, and carriage returns) are generally syntactically insignificant
(NB: generally, not strictly: the end of line is significant as part of a c++ style comment!)

o An RTL (Register Transfer Language) style approach provides maximal visibility into the
program activity at the hardware resource level.

4.2 Syntax

4.2.1 Program

A program is made up of comments and instructions. There is no blocking or scoping:
everything is global and must be managed by the programmer.

4.2.2 Comments

Comments are very important and should be generously provided. The language supports both
the c-style and the c++ style comments. E.g.:

Doc. Number: 501-0004 63

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

/* this is a c-style comment
which occupies multiple lines.
it starts with a slash-star structure
and terminates with a star-slash. */

// this is a c++ style comment: it extends to the end-of-line)

Comments are placed between instructions. NB: comments are not presently allowed inside
instructions.

4.2.3 Instructions

Instructions consist of a selection of clauses, which are explained below. Instructions are
terminated with a semicolon ‘;’ character.

Instructions are not restricted to a single line. Whitespace (i.e. space characters, tab characters,
newline characters, etc.) is of no syntactic relevance (except in the case of the c++ style
comment as noted above.) The experienced programmer will liberally use whitespace to make
the program easier to read and maintain.

4.2.4 Instruction clauses

Instruction clauses consist of like items grouped together within an instruction. Clauses are
generally separated from each other by comma ‘,’ characters. However, the comma character
does not uniquely identify the end of a clause: the items within a clause are also often separated
by commas.

The first clause in every instruction is a Label Define Clause. Subsequent clauses are identified
by function. Clauses which control the selection of input data to registers are called Register-
See Clauses. Operation Clauses specify the particular function to be performed. The writing of
new data to the registers is specified by an Update Clause.

Generally, the instruction clauses for a hardware module follow the form:

<see clause> <operation clause> <update clause>

Instructions often control the operation of multiple hardware modules that operate in parallel.
When multiple modules are involved, the instruction parts for the modules are not intermixed in
free-form; rather they are grouped together. E.g.: <clauses for module a> <clauses for
module b>;.

4.2.4.1 Label Define Clause
A Label Define Clause is used to assign a convenient label or tag to an address in memory. It is
the first clause in any instruction. A Label Define Clause is not separated from other clauses by

a comma ‘,’ character. The separator is a space ‘ ‘ character instead.

A Label Define Clause takes one of two forms. The first form consists of an identifier followed by
a colon "’ character, e.g.

my label42:

Doc. Number: 501-0004 64

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

The second form is empty: no identifier and no colon ‘" character. Consider:

nop () ;
nop () ;

Each of those two instructions has a Label Define Clause: an empty Label Define Clause.

4.2.4.2 Label Use Clause

A Label Use Clause is employed to make use of a convenient label or tag in an instruction. A
Label Use Clause consists of an identifier, which is elsewhere specified in a Label Define
Clause, or a constant value. These example instructions each include a Label Use Clause:

pc = my start;
pc 0x1234; // magic numbers are usually bad.
if (a0gt != TRUE) pc = agc_loop top;
pimm = my buf start,
b0 r (&pimm) ,nop(),b0 r(next), bl r(&sm),nop();
call (my sub);

4.2.4.3 Immediate Clause

An immediate clause is written as a direct assignment of a constant value, or an expression
which resolves to a constant (e.g. a Label Use Clause in cases where a memory address is
apropos), into an allowable DSP resource. These resources include:

pc the program counter register

pimm the program immediate register
config the configuration register

iterate0 Block iteration count register #0
iteratel Block iteration count register #1
repeat the program instruction repeat counter

Some instructions in the “Control Instructions” group consist of a single immediate clause.
Examples of these cases, where the immediate clauses are the whole instruction, follow:

pc = 0x9876;

repeat = 0x12;

config = OxXDEAD;

if (a0gt != TRUE) pc = OxXFADE;

Doc. Number: 501-0004 65

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

4.2.4.4 Pimm Clause

Some of the instructions operate using immediate data as part of a larger instruction. The part of
such a complex instruction which is apropos to the immediate data is called a Pimm Clause and
the syntactic form will always be that of an assignment of the immediate data to the pimm
register. E.g.:

pimm = 0x1234,

4.2.4.5 Configuration clause

The global operation of the various modules is controlled by the contents of the config register.
When writing the program instruction to properly load the register, an immediate value is
embedded in the program code. Such a collection of 1's and 0’s is not very convenient,
however. To remedy this, the syntax allows the programmer to use mnemonic tokens for the
various configuration control constants. In the collecting of these tokens, the programmer’s
choice of plus ‘+’ or bar ‘|’ characters are for joining with a logical OR function. (There is merit in
consistency.) The ampersand ‘& character joins with a logical AND function. Precedence is
strictly left to right. The resulting construct is called a “Configuration clause” in the grammar and
elsewhere in this document. An example configuration clause is found after the equal sign in
this instruction:

config = al(sat) + mO(fract) | ml(int);

(See also 3.3.7 Configuration Register and 25 Configuration Register load instruction.)

4.2.4.6 DMA Configuration clause

The operation of the DMA function, getting data from the A/D module and putting data to the
D/A module, is controlled by the contents of the dmaconfig register. When writing the program
instruction to properly load the register, an immediate value is embedded in the program code.
The syntax allows the programmer to use mnemonic tokens for the various control constants. In
the collecting of these tokens, the programmer’s choice of plus ‘+ or bar ‘|’ characters are for
joining with a logical OR function. (There is merit in consistency.) The ampersand ‘&’ character
joins with a logical AND function. Precedence is strictly left to right. The resulting construct is
called a “DMA Configuration clause” in the grammar and elsewhere in this document. An
example DMA configuration clause is found after the equal sign in this instruction:

dmaconfig = see dma(on) + dab(l) + adb(l) + daen(on) + aden(on);

(See also 3.3.6_DMA Configuration Register and 26_DMA Configuration Register load
instruction.)

Doc. Number: 501-0004 66

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

4.2.4.7 Register-See Clause

Many of the DSP registers take their input from a selection of sources under program control.
The configuration information for all of the registers in a specific module is grouped together in a
Register-See clause. This clause is used to express the desired configuration of such input
multiplexers: in effect to tell what each of the input registers of a module will see.

A Register-See clause consists of one or more items which specify the inputs for a register.
These register item sub-clauses are separated by comma *,’ characters. The order of the

register items within a Register-See clause is unimportant.

Syntactically, the Register-See clause is made to look like a c-function call. It consists of the
name of the register as the function, with the “address of” the desired data source appearing as
a parameter to the function. The following is an example of a register-see clause for the ALU:

a0 x(&pimm), a0 y (&m0 r), a0 s(&al),

Doc. Number: 501-0004 67

NS85 Programmer Reference Manual v2_1.doc

Proprietary

4.2.4.7.1 ALUO Register-See Clause

Version: 2.1.0

The ALUO Register-See clause may contain any of the following tokens in any order:

token

action

a0 x(&pimm)

Select immediate value (pimm register or
DMA write address, selected by bit 0 of
dmaconfig registe) as the input to the
ALUO x register

a0 x(&al)

Select the output of ALUO as the input to
the ALUO x register

a0 _x(&b0_bus)

Select Data Memory Bus 0 as the input to
the ALUO x register

a0 x (&bl bus)

Select Data Memory Bus 1 as the input to
the ALUO x register

a0 x(&b2 bus)

Select Data Memory Bus 2 as the input to
the ALUO x register

a0 x(&b3 bus)

Select Data Memory Bus 3 as the input to
the ALUO x register

a0 x(&m0_r)

Select the register bus from MACO as the
input to the ALUO x register

a0 x(&ml r)

Select the register bus from MAC1 as the
input to the ALUO x register

Table 4.1 - Input Selection for ALUO X Register

Doc. Number: 501-0004

68

NS85 Programmer Reference Manual v2_1.doc PrOprIetary
token action
a0_y (&pimm) Select immediate value (pimm register or
DMA read address, selected by bit 0 of
dmaconfig register) as the input to the
ALUO y register
a0_y(&a0) Select the output of ALUO as the input to

the ALUO y register

a0_y (&b0_bus)

Select Data Memory Bus 0 as the input to
the ALUO y register

a0 y (&bl bus)

Select Data Memory Bus 1 as the input to
the ALUO y register

a0 _y(&b2 bus)

Select Data Memory Bus 2 as the input to
the ALUO y register

a0 y(&b3 bus)

Select Data Memory Bus 3 as the input to
the ALUO y register

a0 y (&m0 r)

Select the register bus from MACO as the
input to the ALUO y register

a0 y(&ml r)

Select the register bus from MAC1 as the
input to the ALUO y register

Table 4.2 - Input Selection for ALUO Y Register

Version: 2.1.0

token

action

a0 s (&pimm)

Select PIMM as the input to the ALUO s
register

a0 s (&(long)pimm)

Select sign-extended PIMM as the input
to the ALUO s register

a0 s (&b0 bus)

Select b0_bus as the input to the ALUO s
register

a0_s(&a0)

Select the output of ALUO as the input to
the ALUO s register

Table 4.3 - Input Selection for ALUO S Register

Doc. Number: 501-0004

69

NS85 Programmer Reference Manual v2_1.doc

Proprietary

token

action

a0 f (&pimm)

Select PIMM as the input to the ALUO
flags register

a0_f (&a0)

Select the output of ALUO as the input to
the ALUO flags register

Table 4.4 - Input Selection for ALUO Flags Register

token

action

a0 r(&al0_xh)

Select the ALUO xh register as the source
for the ALUO register bus (a0 _r)

a0 r(&a0 x1)

Select the ALUO xl register as the source
for the ALUO register bus (a0_r)

a0 r(&a0_yh)

Select the ALUO yh register as the source
for the ALUO register bus (a0 _r)

a0 r(&a0 yl)

Select the ALUO yl register as the source
for the ALUO register bus (a0_r)

a0 r(&al0_sh)

Select the ALUO sh register as the source
for the ALUO register bus (a0 _r)

a0 r(&a0 sl)

Select the ALUO sl register as the source
for the ALUO register bus (a0_r)

a0 r(&a0_ f)

Select the ALUO flags register as the
source for the ALUO register bus (a0 _r)

Table 4.5 - Input Selection for ALUO Register Bus

Doc. Number: 501-0004

70

Version: 2.1.0

NS85 Programmer Reference Manual v2_1.doc

Proprietary

4.2.4.7.2 MACO Register-See Clause

Version: 2.1.0

The MACO Register-See clause may contain any of the following tokens in any order:

token

action

m0 x (&pimm)

Select PIMM as the input to the MACO x
register

m0_x (&b0_bus)

Select Data Memory Bus 0 as the input to
the MACO x register

m0 x (&bl bus)

Select Data Memory Bus 1 as the input to
the MACO x register

m0 x(&b2 bus)

Select Data Memory Bus 2 as the input to
the MACO x register

m0 x (&b3 bus)

Select Data Memory Bus 3 as the input to
the MACO x register

m0 x(&ml r)

Select the register bus from MAC1 as the
input to the MACO x register

m0 x(&al r)

Select the register bus from ALUO as the
input to the MACO x register

Table 4.6 - Input Selection for MACO X Register

Doc. Number: 501-0004

71

NS85 Programmer Reference Manual v2_1.doc

Proprietary

token

action

m0_y (&pimm)

Select PIMM as the input to the MACO y
register

m0_y (&b0_bus)

Select Data Memory Bus 0 as the input to
the MACO y register

m0_y (&bl bus)

Select Data Memory Bus 1 as the input to
the MACO y register

m0_y (&b2 bus)

Select Data Memory Bus 2 as the input to
the MACO y register

m0_y (&b3 bus)

Select Data Memory Bus 3 as the input to
the MACO y register

m0 y(&ml r)

Select the register bus from MAC1 as the
input to the MACO vy register

m0 y(&a0 r)

Select the register bus from ALUO as the
input to the MACO y register

Table 4.7 - Input Selection for MACO Y Register

Version: 2.1.0

token

action

m0_ s (&(long)pimm)

to the MACO s register

Select sign-extended PIMM as the input

m0_s (&b _bus)

{b2_bus[7:0],b1_bus[15:0],b0_bus[15:0]}
as the input to the MACO s register

Select the memory bus catenation

m0_s (&m0)

MACO s register

Select output of MACO as the input to the

m0 s(&al r)

the input to the MACO s register

Select the output of ALUO register bus as

Table 4.8 - Input Selection for MACO S Register

Doc. Number: 501-0004

72

NS85 Programmer Reference Manual v2_1.doc

Proprietary

token

action

m0 f (&pimm)

Select PIMM as the input to the MACO
flags register

m0_ £ (&m0)

Select the output of MACO as the input to
the MACO flags register

Table 4.9 - Input Selection for MACO Flags Register

Version: 2.1.0

token

action

m0 r (&m0 _x)

Select the MACO x register as the source
for the MACO register bus (m0 _r)

m0_r (&m0_y)

Select the MACQO vy register as the source
for the MACO register bus (m0_r)

m0_r (&mO_sh)

Select the high half of the MACO s register
as the source for the MACO register bus
(m0_r)

m0_r (&m0 _sl)

Select the low half of the MACO s register
as the source for the MACO register bus
(m0_r)

m0_r (&m0 _sg)

Select the guard bits of the MACO s
register as the source for the MACO
register bus (m0 _r)

m0 r(&(int)m0 sg)

Select the sign extended guard bits of the
MACO s register as the source for the
MACO register bus (m0_r)

m0 r (&m0 f)

Select the MACO flags register as the
source for the MACO register bus (m0 _r)

Table 4.10 - Input Selection for MACO Register Bus

Doc. Number: 501-0004

73

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

4.2.4.7.3 MAC1 Register-See Clause
The MAC1 Register-See clause may contain any of the following tokens in any order:

token action

ml_x (&pimm) Select PIMM as the input to the MAC1 x
register

ml x(&b0 bus) Select Data Memory Bus 0 as the input to

the MAC1 x register

ml_x(&bl_bus) Select Data Memory Bus 1 as the input to
the MAC1 x register

ml x(&b2 bus) Select Data Memory Bus 2 as the input to
the MAC1 x register

ml_x (&b3_bus) Select Data Memory Bus 3 as the input to
the MAC1 x register

ml x (&m0 r) Select the register bus from MACO as the
input to the MAC1 x register

ml x(&al_r) Select the register bus from ALUO as the
input to the MAC1 x register

Table 4.11 - Input Selection for MAC1 X Register

Doc. Number: 501-0004 74

NS85 Programmer Reference Manual v2_1.doc

Proprietary

token

action

ml y (&pimm)

Select PIMM as the input to the MAC1 y
register

ml y(&b0_bus)

Select Data Memory Bus 0 as the input to
the MAC1 y register

ml y (&bl bus)

Select Data Memory Bus 1 as the input to
the MAC1 y register

ml y(&b2 bus)

Select Data Memory Bus 2 as the input to
the MAC1 y register

ml y(&b3 bus)

Select Data Memory Bus 3 as the input to
the MAC1 y register

ml y (&m0 _r)

Select the register bus from MACO as the
input to the MAC1 y register

ml y(&a0 r)

Select the register bus from ALUO as the
input to the MAC1 y register

Table 4.12 - Input Selection for MAC1 Y Register

Version: 2.1.0

token

action

ml s (&(long)pimm)

to the MAC1 s register

Select sign-extended PIMM as the input

ml s (&b bus)

{b2_bus[7:0],b1_bus[15:0],b0_bus[15:0]}
as the input to the MAC1 s register

Select the memory bus catenation

ml s (&mo0)

MACH1 s register

Select output of MAC1 as the input to the

ml s(&al r)

the input to the MAC1 s register

Select the output of ALUO register bus as

Table 4.13 - Input Selection for MAC1 S Register

Doc. Number: 501-0004

75

NS85 Programmer Reference Manual v2_1.doc

Proprietary

token

action

ml f (&pimm)

Select PIMM as the input to the MAC1
flags register

ml f (&ml)

Select the output of MAC1 as the input to
the MAC1 flags register

Table 4.14 - Input Selection for MAC1 Flags Register

Version: 2.1.0

token

action

ml r(&ml x)

Select the MAC1 x register as the source
for the MAC1 register bus (m1_r)

ml r(&ml_y)

Select the MAC1 y register as the source
for the MAC1 register bus (m1_r)

ml r(&ml sh)

Select the high half of the MAC1 s register
as the source for the MAC1 register bus
(m1_r)

ml r(&ml sl)

Select the low half of the MAC1 s register
as the source for the MAC1 register bus
(m1_r)

ml r(&ml sg)

Select the guard bits of the MAC1 s
register as the source for the MAC1
register bus (m1_r)

ml r(&(int)ml sg)

Select the sign extended guard bits of the
MAC1 s register as the source for the
MACH1 register bus (m1_r)

ml r(&ml f)

Select the MAC1 flags register as the
source for the MAC1 register bus (m1_r)

Table 4.15 - Input Selection for MAC1 Register Bus

Doc. Number: 501-0004

76

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

4.2.4.7.4 SM Register-See Clause

The SM Register-See clause may contain allowable tokens in any order. Note that input
selections are limited in several ways by hardware. The s, e, r, and w registers require an “all or
none” selection of data from the SM. When the SM is not selected, the s and e register inputs
are configured to select the pimm register. The r and w register inputs are selected by a single,
common control, thus the source code selection must be consistent. The SM Register-See
clause includes the SM B0123 Register-See Clause and uses the following additional tokens:

token action

sm_s (&pimm) Select PIMM as the input to the SM s
register set

sm_s (&sm) Select memory data from SM as the input
to the SM s (and all other s/e/r/w) register

Table 4.16 - Input Selection for SM S Register

token action

sm_e (&pimm) Select PIMM as the input to the SM e
register set

sm_e (&sm) Select memory data from SM as the input
to the SM e (and all other s/e/r/w) register

Table 4.17 - Input Selection for SM E Register

Doc. Number: 501-0004 77

NS85 Programmer Reference Manual v2_1.doc

Proprietary

token

action

sm_r (&pimm)

Select PIMM as the input to the SM r
register set

sm_r (&sm)

Select memory data from SM as the input
to the SM r (and all other s/e/r/w) register

sm r(&b0 r)

Select Data Memory Bus 0 ACU read
pointer as the input to the SM r register

sm r (&bl r)

Select Data Memory Bus 1 ACU read
pointer as the input to the SM r register

sm r(&b2 r)

Select Data Memory Bus 2 ACU read
pointer as the input to the SM r register

sm r(&b3 r)

Select Data Memory Bus 3 ACU read
pointer as the input to the SM r register

Table 4.18 - Input Selection for ACUO R Register

token

action

sm w(&pimm)

Select PIMM as the input to the SM w
register set

sm_w(&sm)

Select memory data from SM as the input
to the SM_w (and all other s/e/r/w)
registers

sm w(&b0 w)

Select Data Memory Bus 0 ACU write
pointer as the input to the SM w register

sm w(&bl w)

Select Data Memory Bus 1 ACU write
pointer as the input to the SM w register

sm w(&b2 w)

Select Data Memory Bus 2 ACU write
pointer as the input to the SM w register

sm w(&b3 w)

Select Data Memory Bus 3 ACU write
pointer as the input to the SM w register

Table 4.19 - Input Selection for SM W Register

Doc. Number: 501-0004

78

Version: 2.1.0

NS85 Programmer Reference Manual v2_1.doc

Proprietary Version: 2.1.0
4.2.4.7.5 SM B0123 Reqister-See Clause

token action

sm_b0 (&sm_serw[0]) | Select cached pointer set #0 to be
returned from the SM to ACUO

sm_bO (&sm_serw[1]) | Select cached pointer set #1 to be
returned from the SM to ACUO

sm_ b0 (&sm_serw([2]) | Select cached pointer set #2 to be
returned from the SM to ACUO

sm_bO (&sm_serw[3]) | Select cached pointer set #3 to be
returned from the SM to ACUO

sm b0 (&sm_serw([4]) | Select cached pointer set #4 to be
returned from the SM to ACUO

sm_bO (&sm_serw[5]) | Select cached pointer set #5 to be
returned from the SM to ACUO

sm_b0 (&sm_serw([6]) | Select cached pointer set #6 to be
returned from the SM to ACUO

sm_bO (&sm_serw[7]) | Select cached pointer set #7 to be
returned from the SM to ACUO

Table 4.20 - Pointer Selection for SM_BO0 Return

Doc. Number: 501-0004

79

NS85 Programmer Reference Manual v2_1.doc

Proprietary Version: 2.1.0

token action

sm_bl (&sm_serw([0]) | Select cached pointer set #0 to be
returned from the SM to ACU1

sm_bl (&sm_serw[1l]) | Select cached pointer set #1 to be
returned from the SM to ACU1

sm_bl (&sm_serw([2]) | Select cached pointer set #2 to be
returned from the SM to ACU1

sm_bl (&sm_serw[3]) | Select cached pointer set #3 to be
returned from the SM to ACU1

sm bl (&sm_serw([4]) | Select cached pointer set #4 to be
returned from the SM to ACU1

sm_bl (&sm_serw[5]) | Select cached pointer set #5 to be
returned from the SM to ACU1

sm_bl (&sm_serw([6]) | Select cached pointer set #6 to be
returned from the SM to ACU1

sm_bl (&sm_serw[7]) | Select cached pointer set #7 to be
returned from the SM to ACU1

Table 4.21 - Pointer Selection for SM_B1 Return

Doc. Number: 501-0004

80

NS85 Programmer Reference Manual v2_1.doc

Proprietary Version: 2.1.0

token action

sm_b2 (&sm_serw([0]) | Select cached pointer set #0 to be
returned from the SM to ACU2

sm_b2 (&sm_serw[1l]) | Select cached pointer set #1 to be
returned from the SM to ACU2

sm_b2 (&sm_serw([2]) | Select cached pointer set #2 to be
returned from the SM to ACU2

sm_b2 (&sm_serw[3]) | Select cached pointer set #3 to be
returned from the SM to ACU2

sm b2 (&sm_serw([4]) | Select cached pointer set #4 to be
returned from the SM to ACU2

sm_b2 (&sm_serw[5]) | Select cached pointer set #5 to be
returned from the SM to ACU2

sm_b2 (&sm_serw([6]) | Select cached pointer set #6 to be
returned from the SM to ACU2

sm_b2 (&sm_serw[7]) | Select cached pointer set #7 to be
returned from the SM to ACU2

Table 4.22 - Pointer Selection for SM_B2 Return

Doc. Number: 501-0004

81

NS85 Programmer Reference Manual v2_1.doc

Proprietary Version: 2.1.0

token action

sm_b3 (&sm_serw([0]) | Select cached pointer set #0 to be
returned from the SM to ACU3

sm_b3 (&sm_serw[1]) | Select cached pointer set #1 to be
returned from the SM to ACU3

sm_b3 (&sm_serw([2]) | Select cached pointer set #2 to be
returned from the SM to ACU3

sm_b3 (&sm_serw[3]) | Select cached pointer set #3 to be
returned from the SM to ACU3

sm b3 (&sm_serw([4]) | Select cached pointer set #4 to be
returned from the SM to ACU3

sm_b3 (&sm_serw[5]) | Select cached pointer set #5 to be
returned from the SM to ACU3

sm_b3 (&sm_serw([6]) | Select cached pointer set #6 to be
returned from the SM to ACU3

sm_b3 (&sm_serw[7]) | Select cached pointer set #7 to be
returned from the SM to ACU3

Table 4.23 - Pointer Selection for SM_B3 Return

Doc. Number: 501-0004

82

NS85 Programmer Reference Manual v2_1.doc

Proprietary

4.2.4.7.6 ACU 0 ACU Register-See Clause

Version: 2.1.0

The ACUO Register-See clause includes the tokens in the ACU 0 Pointer Regqister-See Clause

and the following tokens in any order:

token

action

b0_d(&pimm)

Select PIMM as the input to the ACUO d
register

b0 d(&al0 r)

Select ALUO register bus as the input to
the ACUO d register

b0 _d(&m0_r)

Select MACO register bus as the input to
the ACUO d register

b0 d(&ml r)

Select MAC1 register bus as the input to
the ACUO d register

b0_d(&b0_p)

Select the modified pointer in ACUO as
the input to the ACUO d register

b0_d (&bl bus)

Select the Data Memory #1 bus as the
input to the ACUO d register

b0_d(&b2_bus)

Select the Data Memory #2 bus as the
input to the ACUO d register

b0_d(&b3_bus)

Select the Data Memory #3 bus as the
input to the ACUO d register

Table 4.24 - Input Selection for ACUO D Register

Doc. Number: 501-0004

83

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

4.2.4.7.7 ACU 0 Pointer Register-See Clause

The ACUO Pointer Register-See clause may contain any (note the exception regarding r and w
registers) of the following tokens in any order:

token action

b0_c (&pimm) Select PIMM as the input to the ACUO ¢
register set

b0 c(&sm) Select cached pointer data from SM as
the input to the ACUO c register set

Table 4.25 - Input Selection for ACUO C Register

token action

b0_r (&pimm) Select PIMM as the input to the ACUO r
register

b0_r (&sm) Select cached pointer data from SM as

the input to the ACUO r register

b0_r(&al_r) Select ALUO register bus as the input to
the ACUO r register

b0 r(&b0 p) Select the modified pointer in ACUO as
the input to the ACUO r register

Table 4.26 - Input Selection for ACUO R Register

NB: though the update controls are independent, the inputs of the bO_r register and the b0_w
register use the same selector, thus only one of the two types of input selection tokens is
allowed in an ACU 0 Pointer Register-See Clause.

Doc. Number: 501-0004 84

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

token action

b0_w(&pimm) Select PIMM as the input to the ACUO w
register

b0_w(&sm) Select cached pointer data from SM as

the input to the ACUO w register

b0_w(&al_r) Select ALUO register bus as the input to
the ACUO w register
b0 w(&b0 p) Select the modified pointer in ACUO as

the input to the ACUO w register

Table 4.27 - Input Selection for ACUO W Register

NB: though the update controls are independent, the inputs of the bO_r register and the b0_w
register use the same selector, thus only one of the two types of input selection tokens is
allowed in an ACU 0 Pointer Register-See Clause.

Doc. Number: 501-0004 85

NS85 Programmer Reference Manual v2_1.doc

Proprietary

4.2.4.7.8 ACU 1 Register-See Clause

Version: 2.1.0

The ACU1 Register-See clause includes the tokens in the ACU 1 Pointer Regqister-See Clause

and the following tokens in any order:

token

action

bl d(&pimm)

Select PIMM as the input to the ACU1 d
register

bl d(&al0_r)

Select ALUO register bus as the input to
the ACU1 d register

bl d(&m0 r)

Select MACO register bus as the input to
the ACU1 d register

bl d(&ml_r)

Select MAC1 register bus as the input to
the ACU1 d register

bl d(&bl p)

Select the modified pointer in ACU1 as
the input to the ACU1 d register

bl d(&b0 bus)

Select the Data Memory #0 bus as the
input to the ACU1 d register

bl d(&b2 bus)

Select the Data Memory #2 bus as the
input to the ACU1 d register

bl d(&b3_bus)

Select the Data Memory #3 bus as the
input to the ACU1 d register

Table 4.28 - Input Selection for ACU1 D Register

Doc. Number: 501-0004

86

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

4.2.4.7.9 ACU 1 Pointer Register-See Clause

The ACU1 Pointer Register-See clause may contain any (note the exception regarding r and w
registers) of the following tokens in any order:

token action

bl c(&pimm) Select PIMM as the input to the ACU1 ¢
register set

bl c(&sm) Select cached pointer data from SM as
the input to the ACU1 c register set

Table 4.29 - Input Selection for ACU1 C Register

token action

bl r (&pimm) Select PIMM as the input to the ACU1 r
register

bl r(&sm) Select cached pointer data from SM as

the input to the ACU1 r register

bl r(&al_r) Select ALUO register bus as the input to
the ACU1 r register

bl r (&bl p) Select the modified pointer in ACU1 as
the input to the ACU1 r register

Table 4.30 - Input Selection for ACU1 R Register

NB: though the update controls are independent, the inputs of the b1_r register and the b1_w
register use the same selector, thus only one of the two types of input selection tokens is
allowed in an ACU 1 Pointer Register-See Clause.

Doc. Number: 501-0004 87

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

token action

bl w(&pimm) Select PIMM as the input to the ACU1 w
register

bl w(&sm) Select cached pointer data from SM as

the input to the ACU1 w register

bl w(&al_r) Select ALUO register bus as the input to
the ACU1 w register

bl w(&bl p) Select the modified pointer in ACU1 as
the input to the ACU1 w register

Table 4.31 - Input Selection for ACU1 W Register

NB: though the update controls are independent, the inputs of the b1_r register and the b1_w
register use the same selector, thus only one of the two types of input selection tokens is
allowed in an ACU 1 Pointer Register-See Clause.

Doc. Number: 501-0004 88

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

4.2.4.7.10ACU 2 Register-See Clause

The BUS2 Register-See clause includes the tokens in the ACU 2 Pointer Regqister-See Clause
and the following tokens in any order:

token action

b2_d(&pimm) Select PIMM as the input to the ACU2 d
register

b2 d(&al0 r) Select ALUO register bus as the input to

the ACU2 d register

b2_d(&m0_r) Select MACO register bus as the input to
the ACU2 d register

b2 d(&ml_r) Select MAC1 register bus as the input to
the ACU2 d register

b2 d(&b2 p) Select the modified pointer in ACU2 as
the input to the ACU2 d register

b2 d(&b0 bus) Select the Data Memory #0 bus as the
input to the ACU2 d register

b2 d(&bl bus) Select the Data Memory #1 bus as the
input to the ACUZ2 d register

b2 d(&b3 bus) Select the Data Memory #3 bus as the
input to the ACU2 d register

Table 4.32 - Input Selection for ACU2 D Register

4.2.4.7.11 ACU 2 Pointer Register-See Clause

The ACU2 Pointer Register-See clause may contain any (note the exception regarding r and w
registers) of the following tokens in any order:

token action

b2 c(&pimm) Select PIMM as the input to the ACU2 ¢
register set

b2 c(&sm) Select cached pointer data from SM as
the input to the ACU2 c register set

Table 4.33 - Input Selection for ACU2 C Register

Doc. Number: 501-0004 89

NS85 Programmer Reference Manual v2_1.doc

Proprietary

token

action

b2 r(&pimm)

Select PIMM as the input to the ACU2 r
register

b2 r(&sm)

Select cached pointer data from SM as
the input to the ACU2 r register

b2 r(&a0 r)

Select ALUO register bus as the input to
the ACU2 r register

b2 r(&b2_p)

Select the modified pointer in ACU2 as
the input to the ACU2 r register

Table 4.34 - Input Selection for ACU2 R Register

Version: 2.1.0

NB: though the update controls are independent, the inputs of the b2_r register and the b2 _w
register use the same selector, thus only one of the two types of input selection tokens is
allowed in an ACU 2 Pointer Register-See Clause.

token

action

b2 w(&pimm)

Select PIMM as the input to the ACU2 w
register

b2 w(&sm)

Select cached pointer data from SM as
the input to the ACU2 w register

b2 w(&al0 r)

Select ALUO register bus as the input to
the ACU2 w register

b2 w(&b2 p)

Select the modified pointer in ACU2 as
the input to the ACU2 w register

Table 4.35 - Input Selection for ACU2 W Register

NB: though the update controls are independent, the inputs of the b2_r register and the b2_w
register use the same selector, thus only one of the two types of input selection tokens is
allowed in an ACU 2 Pointer Register-See Clause.

Doc. Number: 501-0004

90

NS85 Programmer Reference Manual v2_1.doc

Proprietary

4.2.4.7.12 ACU 3 Register-See Clause

Version: 2.1.0

The ACUS3 Register-See clause includes the tokens in the ACU 3 Pointer Register-See Clause

and the following tokens in any order:

token

action

b3 _d(&pimm)

Select PIMM as the input to the ACU3 d
register

b3 d(&al0 r)

Select ALUO register bus as the input to
the ACUS d register

b3 _d(&m0_r)

Select MACO register bus as the input to
the ACU3 d register

b3 d(&ml r)

Select MAC1 register bus as the input to
the ACUS d register

b3_d(&b3_p)

Select the modified pointer in ACU3 as
the input to the ACU3 d register

b3_d(&b0_bus)

Select the Data Memory #0 bus as the
input to the ACU3 d register

b3_d(&bl bus)

Select the Data Memory #1 bus as the
input to the ACU3 d register

b3_d(&b2 bus)

Select the Data Memory #2 bus as the
input to the ACU3 d register

Table 4.36 - Input Selection for ACU3 D Register

Doc. Number: 501-0004

91

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

4.2.4.7.13ACU 3 Pointer Register-See Clause

The ACU3 Pointer Register-See clause may contain any (note the exception regarding r and w
registers) of the following tokens in any order:

token action

b3 _c(&pimm) Select PIMM as the input to the ACU3 ¢
register set

b3_c(&sm) Select cached pointer data from SM as
the input to the ACU3 c register set

Table 4.37 - Input Selection for ACU3 C Register

token action

b3_r (&pimm) Select PIMM as the input to the ACU3 r
register

b3_r(&sm) Select cached pointer data from SM as

the input to the ACU3 r register

b3_r(&al_r) Select ALUO register bus as the input to
the ACUS r register

b3 r(&b3 p) Select the modified pointer in ACU3 as
the input to the ACU3 r register

Table 4.38 - Input Selection for ACU3 R Register

NB: though the update controls are independent, the inputs of the b3_r register and the b3_w
register use the same selector, thus only one of the two types of input selection tokens is
allowed in an ACU 3 Pointer Register-See Clause.

Doc. Number: 501-0004 92

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

token action

b3_w(&pimm) Select PIMM as the input to the ACU3 w
register

b3_w(&sm) Select cached pointer data from SM as

the input to the ACU3 w register

b3_w(&al_r) Select ALUO register bus as the input to
the ACU3 w register
b3 w(&b3 p) Select the modified pointer in ACU3 as

the input to the ACU3 w register

Table 4.39 - Input Selection for ACU3 W Register

NB: though the update controls are independent, the inputs of the b3 r register and the b3 w
register use the same selector, thus only one of the two types of input selection tokens is
allowed in an ACU 3 Pointer Register-See Clause.

4.2.4.8 Operation Clause

An Operation clause expresses the operation which is to be performed by a specific module.
The clause is separated from other clauses by a comma ‘,’ character. An Operation clause is
generally a very clear c-like expression that details the inputs and the desired action for the
module. For example, an ALU-MAC instruction would contain two Operation clauses (one for
each module) and might look like this:

(a0 x & a0 y), . . . (m0O x * m0 y),

Operations in ALUO and MACO and MAC1 determine special result conditions which can be
latched into the flag registers (a0_f, mO_f, and m1_f) of the respective units. These conditions
come in two flavours: transient and sticky. Transient conditions are evaluated for truth/falsehood
on a cycle by cycle basis. The sticky conditions are evaluated for truth/falsehood on a cycle by
cycle basis and logically OR’d with the prior value. The flags are updated only if the register is
indicated in the update clause of the instruction. Clearing a sticky bit in a flag register is
accomplished by loading from the pimm register.

Doc. Number: 501-0004 93

Proprietary Version: 2.1.0

NS85 Programmer Reference Manual v2_1.doc

4.2.4.8.1 ALUO Operation Clause

The operation to be performed by ALUO is specified by this clause. Note that the nop ()
operation is a fiction of the assembler: the unit will perform a fixed operation but updates of the
a0 f (flags) or a0 s (result) registers is not allowed.

The special result conditions which can be captured to a0_f are:

condition name symbol
Overflow on bit 16 or bit 31, depending | Overflow ov
on operation
Sticky overflow on bit 16 or bit 31, Sticky sov
depending on operation. Can be reset by | overflow
only by software.
The result is zero. Zero z
Sticky zero condition. Sticky sz
zero
The result is greater than or equal to | Greater ge
zero. or equal
Sticky greater than or equal to condition. Sticky sge
greater or
equal
The result is greater than zero. Greater gt
than
Sticky greater than condition. Sticky sgt
greater
than
The result generated a carry out from bit Carry c
15 or 31, depending on operation
Sticky carry condition Sticky sc
carry

Table 4.40 - ALUO Result Conditions

Not all operations show these results: only the z (and sz) conditions are produced by all ALUO
operations. Hence, those special result conditions apropos to each operation are indicated with
the individual operation description, appearing as a vector, e.g. {gt,z,c}. The “sticky”
condition is implied by the normal form of the condition, so this form is not explicitly noted. Some
ALUO operations always result in a special condition of a fixed value. For such cases, the fixed
value will be noted in the vector, appearing as an assign: e.g. {gt,z,c=0}.

These are the operations which may be performed by ALUO:

Doc. Number: 501-0004 94

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

token action
nop () No operation is specified
(a0_x1 + a0_yl) Add the contents of the ALUO x| and vyl

registers (short). {ov, z,ge,gt,c}

(a0_x1 - a0 _yl) Subtract the contents of the ALUO vyl
from the xl register (short).
{ov,z,ge,gt,c}

(a0_x + al_y) Add the contents of the ALUO x and y
registers (long). {ov, z,ge,gt,c}

(a0_x - a0_y) Subtract the contents of the ALUO y
from the X register (long).
{ov,z,ge,gt,c}

(a0_s + a0_x1) Add the contents of the ALUO x| and s
registers (long). {ov, z,ge,gt,c}

(a0 _s & 0) Set the ALUO result to zero (long).
{ov,z,ge,gt,c}

divp () Perform division partial primitive (long).

{ov,z,ge,gt,c}

Table 4.41 - Operation Selection for ALUO (Arithmatic)

Doc. Number: 501-0004 95

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

token action

(a0 _x1 & a0 yl) AND the contents of the ALUO xI and vl
registers (short).
{ov=0,z,ge,gt,c=0}

(a0_x1 | a0_yl) OR the contents of the ALUO x| and vyl
registers (short).

{ov=0,z,ge,gt,c=0}

(a0_x1 ~ a0_yl) XOR the contents of the ALUO xI and vyl
registers (short).

{ov=0,z,ge,gt,c=0}

(~ a0_s) Invert (1’s complement) the contents of
the ALUO s register (long).
{ov,z,ge,gt,c=0}

abs (a0 x1) Take the absolute value of the contents
of the ALUO xl register (short).
{ov,z,ge,gt,c=0}

Table 4.42 - Operation Selection for ALUO (Logical)

Doc. Number: 501-0004 96

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

token action

(arith) (a0_x1 << a0_y[3:0]) | Perform an arithmetic left shift on the
contents of the ALUO xlI register, with
the shift amount specified by the low 4
bits of the ALUO vy register.
{ov,z,ge,gt,c=0}

(logic) (a0_x1 << a0_yI[3:0]) | Perform a logical left shift on the
contents of the ALUO xI register, with
the shift amount specified by the low 4
bits of the ALUO vy register.
{ov,z,ge,gt,c=0}

(arith) (a0_x1 >> a0_yI[3:0]) | Perform an arithmetic right shift on the
contents of the ALUO xI register, with
the shift amount specified by the low 4
bits of the ALUO vy register.
{ov=0,z,ge,gt,c=0}

(logic) (a0_x1 >> a0_y[3:0]) | Perform a logical right shift on the
contents of the ALUO xI register, with
the shift amount specified by the low 4
bits of the ALUO vy register.
{ov=0,z,ge,gt,c=0}

(a0 _x[a0 y[3:0]1) Test the bit of the ALUO x register that
is specified by the low 4 bits of the
ALUOQ y register (0 selects LSB) and set
the flags as appropriate.

{ov=0,z,ge=1,gt,c=0}

Table 4.43 - Operation Selection for ALUO (Bits & Short Shifts)
NB: the a0_sl register is the nominal target for short shift instructions. l.e. the short shift

instructions generate results apropos to the a0_sl register. If it is desired to update a0_sh as
well, a long shift instruction should be used.

Doc. Number: 501-0004 97

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

token action

(arith) (a0 _x << a0 y[3:0]) Perform an arithmetic left shift on the
contents of the ALUO x register, with the
shift amount specified by the low 4 bits
of the ALUO y register.
{ov=0,z,ge,gt,c=0}

(logic) (a0_x << a0_y[3:0]) | Perform a logical left shift on the
contents of the ALUO x register, with the
shift amount specified by the low 4 bits
of the ALUO y register.
{ov=0,z,ge,gt,c=0}

(arith) (a0_x >> a0_y[3:0]) | Perform an arithmetic right shift on the
contents of the ALUO x register, with the
shift amount specified by the low 4 bits
of the ALUO y register.
{ov=0,z,ge,gt,c=0}

(logic) (a0_x >> a0_yI[3:0]) | Perform a logical right shift on the
contents of the ALUO x register, with the
shift amount specified by the low 4 bits
of the ALUO y register.
{ov=0,z,ge,gt,c=0}

Table 4.44 - Operation Selection for ALUO (Long Shifts)

4.2.4.8.2 MACO Operation Clause

The operation to be performed by MACO is specified by this clause. Note that the nop ()
operation is a fiction of the assembler: the unit will perform a fixed operation but updates of the
m0_£ (flags) or mo_f£ (result) registers is not allowed.

The special result conditions which can be captured to m0_f are:

condition name symbol
Overflow on bit 31 Overflow ov
Sticky overflow on bit 31. Can be reset Sticky sov
by only by software. overflow
40 bit Overflow on bit 39 Overflow eov
Sticky 40 bit overflow on bit 39. Can be | Sticky seov
reset by only by software. overflow

Table 4.45 - MACO Result Conditions

Doc. Number: 501-0004 98

NS85 Programmer Reference Manual v2_1.doc

Proprietary

Version: 2.1.0

Special result conditions apropos to each operation are indicated with the individual operation
description, appearing as a vector, e.g. {eov,ov}. The “sticky” condition is implied by the

normal form of the condition, so this form is not explicitly noted.

token

action

nop ()

No operation is specified

(m0 x * m0_y)

Multiply the contents of the MACO x and
y registers. {ov}

-(m0 x * m0_y)

Multiply the contents of the MACO x and
y registers and change the sign of the
result. {ov}

m0_s[39:0] + (m0_x * m0_y)

Multiply the contents of the MACO x and
y registers and add the 40 bit contents
of the MACO s register. {eov, ov}

m0 s[39:0] - (m0 x * mO0 y)

Multiply the contents of the MACO x and
y registers and subtract the result from
the 40 bit contents of the MACO s
register. {eov, ov}

Table 4.46 - Operation Selection for MACO

4.2.4.8.3 MAC1 Operation Clause

The operation to be performed by MAC1 is specified by this clause. Note that the nop ()
operation is a fiction of the assembler: the unit will perform a fixed operation but updates of the

ml_ f (flags) orml_s (result) registers is not allowed.

The special result conditions which can be captured to m1_f are:

condition name symbol
Overflow on bit 31 Overflow ov
Sticky overflow on bit 31. Can be reset Sticky sov
by only by software. overflow
40 bit Overflow on bit 39 Overflow eov
Sticky 40 bit overflow on bit 39. Can be | Sticky seov
reset by only by software. overflow

Table 4.47 — MAC1 Result Conditions

Doc. Number: 501-0004 99

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

Special result conditions apropos to each operation are indicated with the individual operation
description, appearing as a vector, e.g. {eov,ov}. The “sticky” condition is implied by the
normal form of the condition, so this form is not explicitly noted.

token Action

nop () No operation is specified

(ml_x * ml_y) Multiply the contents of the MAC1 x and
y registers. {ov}

-(ml_x * ml y) Multiply the contents of the MAC1 x and
y registers and change the sign of the
result. {ov}

ml_s[39:0] + (ml_x * ml y) | Multiply the contents of the MAC1 x and
y registers and add the 40 bit contents
of the MAC1 s register. {eov, ov}

ml_s[39:0] - (ml_x * ml y) | Multiply the contents of the MAC1 x and
y registers and subtract the result from
the 40 bit contents of the MAC1 s
register. {eov, ov}

Table 4.48 - Operation Selection for MAC1

Doc. Number: 501-0004 100

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

4.2.4.8.4 SM Operation Clause
The operation to be performed by the SM is specified by this clause.

token action

sm i

{idx}, sm a = pimm Load the SM | register with the value
{idx} (restricted to 0-7) and load the SM
a register from the pimm register; no
memory access occurs

sm i {idx}, sm

*sm_a++ Load the SM | register with the value
{idx} (restricted to 0-7) and read the SM
RAM at the address in the a register;
post-increment the a register.

sm i

{idx}, sm = *sm a-- Load the SM | register with the value
{idx} (restricted to 0-7) and read the SM
RAM at the address in the a register;

post-decrement the a register.

{idx}, *sm_a++ = sm |Load the SM | register with the value
{idx} (restricted to 0-7) and write the
sm_b2 data to the SM RAM at the
address in the a register; post-
increment the a register.

sm i

{idx},*sm a-- = sm Load the SM | register with the value
{idx} (restricted to 0-7) and write the
sm_b2 data to the SM RAM at the
address in the a register; post-
decrement the a register.

sm i

Table 4.49 - Operation Selection for SM

Doc. Number: 501-0004 101

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

4.2.4.8.5 ACUO Operation Clause
The operation to be performed by Data Memory Bus 0 ACU is specified by this clause.

token action

nop () No operation

nop(), b0 p = b0 w + 1 Perform no memory operation, but
calculate a modified pointer by
adding 1 to the value of bO_w

*b0 w

I}

o
o
Q.

b0 p

bo w + 1 Write the b0_d data to the memory
addressed by b0 _w, calculate a
modified pointer by adding 1 to the
value of bO_w

*b0 w

I}

o
o
Q.

b0 _: bo w + 2 Write the b0_d data to the memory
addressed by bO0_w, calculate a
modified pointer by adding 2 to the

value of bO_w

e}
]

*b0 w

I}

o
o
Q.

b0_p = b0_w + pimm Write the b0_d data to the memory
addressed by b0_w, calculate a
modified pointer by adding the
contents of the pimm register to the

value of bO_w

b0 bus

*b0 r, b0 p

bo r + 1 read the data memory addressed by
b0 r to the b0 _bus, calculate a
modified pointer by adding 1 to the
value of b0 _r

b0 bus

*b0 r, b0 p

bo_r + 2 read the data memory addressed by
b0 r to the b0 _bus, calculate a
modified pointer by adding 2 to the
value of b0 _r

b0 _bus = *b0_r, b0 _p = b0_r + pimm | read the data memory addressed by
b0 r to the b0 _bus, calculate a
modified pointer by adding the
contents of the pimm register to the

value of b0_r

Table 4.50 - Operation Selection for ACUOQ

Doc. Number: 501-0004 102

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

4.2.4.8.6 ACU1 Operation Clause
The operation to be performed by Data Memory Bus 1 ACU is specified by this clause.

token action

nop () No operation

nop(), bl p =bl w + 1 Perform no memory operation, but
calculate a modified pointer by
adding 1 to the value of b1_w

*bl w

]

o
i}
Qu

bl p=bl w+ 1 Write the b1_d data to the memory
addressed by b1 _w, calculate a
modified pointer by adding 1 to the

value of b1_w

*bl w

]

o
i}
Q,

bl _ bl w + 2 Write the b1_d data to the memory
addressed by b1_w, calculate a
modified pointer by adding 2 to the

value of b1_w

e}
]

*bl w

]

o
i}
Qu

bl p = bl w + pimm Write the b1_d data to the memory
addressed by b1_w, calculate a
modified pointer by adding the
contents of the pimm register to the

value of b1_w

bl bus

*bl r, bl p

bl r +1 read the data memory addressed by
b1 r to the b1 _bus, calculate a
modified pointer by adding 1 to the
value of b1 _r

bl bus

*bl r, bl p

bl r + 2 read the data memory addressed by
b1 r to the b1 bus, calculate a
modified pointer by adding 2 to the
value of b1 _r

bl bus = *bl r, bl p = bl r + pimm | read the data memory addressed by
b1 r to the b1 bus, calculate a
modified pointer by adding the
contents of the pimm register to the

value of b1 _r

Table 4.51 - Operation Selection for ACU1

Doc. Number: 501-0004 103

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

4.2.4.8.7 ACU2 Operation Clause
The operation to be performed by Data Memory Bus 2 ACU is specified by this clause.

token action

nop () No operation

nop(), b2 p = b2 w + 1 Perform no memory operation, but
calculate a modified pointer by
adding 1 to the value of b2_w

*b2 w

I

o
)
Qu

b2 p

b2 w + 1 Write the b2_d data to the memory
addressed by b2 w, calculate a
modified pointer by adding 1 to the
value of b2_w

*b2 w

I

o
N
Q,

b2_ b2 w + 2 Write the b2_d data to the memory
addressed by b2 _w, calculate a
modified pointer by adding 2 to the

value of b2_w

e}
]

*b2 w

I

o
N
Qu

b2 p = b2 w + pimm Write the b2_d data to the memory
addressed by b2 _w, calculate a
modified pointer by adding the
contents of the pimm register to the

value of b2_w

b2 bus

*b2 r, b2 p

b2 r + 1 read the data memory addressed by
b2 r to the b2 bus, calculate a
modified pointer by adding 1 to the
value of b2 r

b2 bus

*b2 r, b2 p

b2 r + 2 read the data memory addressed by
b2 r to the b2 bus, calculate a
modified pointer by adding 2 to the
value of b2 r

b2 bus = *b2_r, b2 p = b2_r + pimm | read the data memory addressed by
b2 r to the b2 bus, calculate a
modified pointer by adding the
contents of the pimm register to the

value of b2_r

Table 4.52 - Operation Selection for ACU2

Doc. Number: 501-0004 104

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

4.2.4.8.8 ACU3 Operation Clause
The operation to be performed by Data Memory Bus 3 ACU is specified by this clause.

token action

nop () No operation

nop(), b3 p = b3 w + 1 Perform no memory operation, but
calculate a modified pointer by
adding 1 to the value of b3_w

*b3 w

I

o
w
Qu

b3 p

b3 w + 1 Write the b3_d data to the memory
addressed by b3 w, calculate a
modified pointer by adding 1 to the
value of b3 w

*b3 w

I

o
w
Q,

b3 _ b3 w + 2 Write the b3_d data to the memory
addressed by b3 _w, calculate a
modified pointer by adding 2 to the

value of b3 w

e}
]

*b3 w

I

o
w
Qu

b3 p = b3_w + pimm Write the b3_d data to the memory
addressed by b3 _w, calculate a
modified pointer by adding the
contents of the pimm register to the

value of b3 w

b3 bus

*b3 r, b3 p

b3 r + 1 read the data memory addressed by
b3 r to the b3 bus, calculate a
modified pointer by adding 1 to the
value of b3 r

b3 bus

*b3 r, b3 p

b3 r + 2 read the data memory addressed by
b3 r to the b3 bus, calculate a
modified pointer by adding 2 to the
value of b3 r

b3_bus = *b3_r, b3_p = b3_r + pimm | read the data memory addressed by
b3 r to the b3 bus, calculate a
modified pointer by adding the
contents of the pimm register to the

value of b3 r

Table 4.53 - Operation Selection for ACU3

Doc. Number: 501-0004 105

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2. 1 .0
4.2.4.9 Update Clause

Update clauses exist to individually and independently specify which registers in the associated
active module are to be updated during the current instruction cycle. An Update clause consists
of zero or more comma separated items, each of which specifies a specific register to be
updated. The various register sub-clauses are optional and may appear in any order.

Syntactically, the Update clause is made to look like a c-function call. It consists of the name of
the register as the function, with the literal token “next” appearing as a parameter to the
function. The following is an example of an Update clause which affects all the registers of
MAC1:

ml x(next), ml y(next), ml s(next), ml f(next),

4.2.49.1 ALUO Update Clause
The ALUO Update clause may contain the following tokens in any order:

token action

a0_x1 (next) Update low half of ALUO x register
a0_xh (next) Update high half of ALUO x register
a0 x(next) Update both halves of ALUO x register
a0 yl (next) Update low half of ALUO y register
a0_yh (next) Update high half of ALUO y register
a0 y(next) Update both halves of ALUO y register
a0_sl(next) Update low half of ALUO s register
a0_sh(next) Update high half of ALUO s register
a0_s (next) Update both halves of ALUO s register
a0_f (next) Update the ALUO flags register

Table 4.54 - ALUO Register Update

Doc. Number: 501-0004 106

NS85 Programmer Reference Manual v2_1.doc P rOp rleta ry

4.2.4.9.2 MACO Update Clause

The MACO Update clause may contain the following tokens in any order:

token action

m0_x (next) Update the MACO x register
m0_y (next) Update the MACO y register
m0_s (next) Update the MACO s register
m0_f (next) Update the MACO flags register

Table 4.55 - MACO Register Update

4.2.4.9.3 MAC1 Update Clause

The MAC1 Update clause may contain the following tokens in any order:

token action

ml x(next) Update the MAC1 x register
ml_y (next) Update the MAC1 y register
ml_s (next) Update the MAC1 s register
ml_f (next) Update the MAC1 flags register

Table 4.56 - MAC1 Register Update

Doc. Number: 501-0004 107

Version: 2.1.0

NS85 Programmer Reference Manual v2_1.doc P rO p rleta ry

4.2.4.9.4 SM Update Clause
The SM Update clause may contain the following tokens in any order:

token action

sm_s (next) Update the SM s (circular start) register
sm_e (next) Update the SM e (circular end) register
sm_r (next) Update the SM r register

sm_w(next) Update the SM w register

sm_a (next) Update the SM a register

Table 4.57 - SM Register Update

4.2.4.9.5 ACUO Update Clause
The ACUO Update clause may contain the following tokens in any order:

token action

b0_c (next) Update the ACUO c register set
b0_r (next) Update the ACUO r register
b0_w(next) Update the ACUO w register
b0_d(next) Update the ACUO d register

Table 4.58 — ACUO Register Update

Doc. Number: 501-0004 108

Version: 2.1.0

NS85 Programmer Reference Manual v2_1.doc P rOp rleta ry

4.2.4.9.6 ACU1 Update Clause

The ACU1 Update clause may contain the following tokens in any order:

token action

bl c(next) Update the ACU1 c register set
bl r(next) Update the ACU1 r register
bl w(next) Update the ACU1 w register
bl d(next) Update the ACUO d register

Table 4.59 - ACUO Register Update

4.2.4.9.7 ACU2 Update Clause

The ACU2 Update clause may contain the following tokens in any order:

token action

b2 c(next) Update the ACUZ2 c register set
b2 r (next) Update the ACU2 r register
b2 w(next) Update the ACU2 w register
b2 d(next) Update the ACU2 d register

Table 4.60 - ACU2 Register Update

Doc. Number: 501-0004 109

Version: 2.1.0

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

4.2.4.9.8 ACU3 Update Clause
The ACU3 Update clause may contain the following tokens in any order:

token action

b3_c(next) Update the ACU3 c register set
b3_r (next) Update the ACUS r register

b3 _w(next) Update the ACU3 w register
b3 _d(next) Update the ACU3 d register

Table 4.61 - ACU3 Register Update

Doc. Number: 501-0004 110

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

5 Instruction Reference

5.1 Introduction

The DSP instructions fall into one of two main categories: they are either Control Instructions or
Compute Instructions. The instruction set is introduced and generally described in this section.
The sections which follow are each dedicated to the details of the individual instructions.

Control Instructions are those which are used to configure the global operational characteristics
of the machine (called Configuration Instructions), or which control the possible flows of data
through the datapath (called Data Flow Control Instructions), or which control the flow of
program execution (called Program Flow Instructions).

Compute Instructions are those which direct the computational processes in the various
compute modules. The operations may be limited to the ALU (ALU Instructions) or to one or

both MAC units (MAC Instructions) or they may direct simultaneous MAC and ALU operations
(ALU-MAC Instructions).

5.2 Control Instructions

5.2.1 Configuration Instructions

Configuration Register load instruction
DMA Configuration Register load instruction

ACU configuration instruction

5.2.2 Program Flow Instructions

Branch instruction

Call instruction

If (conditional execution) instruction
Iterate instruction

Nop instruction

Repeat instruction

Return instruction

Doc. Number: 501-0004 111

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

5.2.3 Data Flow Control Instructions

ACU Data Memory 0/1 with immediate instruction
ACU Data Memory 0/2 with immediate instruction
ACU Data Memory 0/3 with immediate instruction
ACU Data Memory 1/0 with immediate instruction
ACU Data Memory 1/2 with immediate instruction
ACU Data Memory 1/3 with immediate instruction
ACU Data Memory 2/0 with immediate instruction
ACU Data Memory 2/1 with immediate instruction
ACU Data Memory 2/3 with immediate instruction
ACU Data Memory 3/0 with immediate instruction
ACU Data Memory 3/1 with immediate instruction
ACU Data Memory 3/2 with immediate instruction

Scratch Memory/Pointer Cache with immediate instruction

5.3 Compute Instructions

5.3.1 ALU Instructions
ALU-ACU instruction

ALUO with Immediate instruction

5.3.2 ALU-MAC Instructions
ALUO-MACO instruction

ALUO-MAC1 instruction

Doc. Number: 501-0004 112

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

5.3.3 MAC Instructions

MACO with Immediate instruction
MAC1 with Immediate instruction
MACO-MAC1 instruction

MACO-MAC1-ACU Instruction

Doc. Number: 501-0004 113

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

6 ACU configuration instruction

6.1 syntax

{b0 _ptr see clause}{b0 update clause}
{b1 ptr see clause}{bl update clause}
{b2 ptr see clause}{b2 update clause}
{b3 ptr see clause}{b3 update clause}
{sm b0123 see clause};

6.2 description

The input multiplexers for each of the Data Memory Bus 0 ACU pointer
registers are configured to select the indicated sources (the absence of a
specified source is still a source and often (but not always) selects the pimm
register); (see 4.2.4.7.7).

The input multiplexers of the Data Memory Bus 1 ACU pointer registers are
configured; (4.2.4.7.9).

The input multiplexers of the Data Memory Bus 2 ACU pointer registers are
configured; (4.2.4.7.11).

The input multiplexers of the Data Memory Bus 3 ACU pointer registers are
configured; (4.2.4.7.13).

The cached pointer sets are selected according to the SM B0123 Register-
See Clause.

The Data Memory Bus 0 ACU registers which are specifically indicated in the
update clause will be written; (see 4.2.4.9.5).

The Data Memory Bus 1 ACU registers in the update clause are written; (see
4.2.4.9.6).

The Data Memory Bus 2 ACU registers in the update clause will be written;
(see 4.2.4.9.7).

The Data Memory Bus 3 ACU registers in the update clause will be written;
(see 4.2.4.9.8).

6.3 flags affected

none.

Doc. Number: 501-0004 114

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2. 1 .0
6.4 examples

b0 c(&sm), b0 r(&b0 p), b0 d(&b0 p), b0 c(next), b0 r(next),
bl c(&sm), bl r(&sm), bl d(&bl p), bl c(next),
bl w(next), b2 c(&pimm), b2 r(&al0 r), b2 c(next)
b3 c(&pimm), b3 r(&a0 r), b3 c(next),
sm b0 (&sm serw[7]), sm bl(&sm serw[4]),
sm b2 (&sm serw[4]), sm b3 (&sm serw[0]);

Doc. Number: 501-0004 115

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

7 ACU Data Memory 0/1 with immediate instruction

7.1 syntax

{pimm clause}
{b0_see clause} {b0 op clause} {b0 update clause}
{bl see clause} {bl op clause} {bl update clause};

7.2 description
e The pimm register is loaded with the specified value; (see 4.2.4.4).
e The input multiplexers for each of the Data Memory Bus 0 ACU registers are
configured to select the indicated sources (the absence of a specified source

is still a source and often (but not always) selects the pimm register).

e The input multiplexers for each of the Data Memory Bus 1 ACU registers are
configured as specified.

e The memory read or write specified by the ACUO Operation Clause is
performed, in the DMEM pipeline stage.

e The memory read or write specified by the ACU1 Operation Clause is
performed, in the DMEM pipeline stage.

e The registers specified by the ACUQ Update Clause are updated.

e The registers specified by the ACU1 Update Clause are updated.

7.3 flags affected

none.

7.4 examples

pimm = OxBABE, b0 c(&sm), b0 r(&b0 p), b0 d(&b0 p),
*b0 w = b0 d, b0 p = b0 w + 1, b0 w(next), b0 c(next),
bl c(&pimm), bl r(&al0 r), nop(), bl c(next);

pimm = 0x1234, b0_c(&sm), b0_r(&sm), b0_d(&b0_p),
b0 bus = *b0 r, b0 p = b0 w + pimm,
b0 c(next), b0 w(next),
bl c(&pimm), bl r(&al r),
bl bus = *bl r, bl p = bl w + 2,
bl c(next);

Doc. Number: 501-0004 116

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

8 ACU Data Memory 0/2 with immediate instruction

8.1 syntax

{pimm clause}
{b0_see clause} {b0 op clause} {b0 update clause}
{b2 see clause} {b2 op clause} {b2 update clause};

8.2 description
e The pimm register is loaded with the specified value; (see 4.2.4.4).
e The input multiplexers for each of the Data Memory Bus 0 ACU registers are
configured to select the indicated sources (the absence of a specified source

is still a source and often (but not always) selects the pimm register).

e The input multiplexers for each of the Data Memory Bus 2 ACU registers are
configured as specified.

e The memory read or write specified by the ACUO Operation Clause is
performed, in the DMEM pipeline stage.

e The memory read or write specified by the ACU2 Operation Clause is
performed, in the DMEM pipeline stage.

e The registers specified by the ACUQ Update Clause are updated.

e The registers specified by the ACU2 Update Clause are updated.

8.3 flags affected

none.

8.4 examples

pimm = OxBABE, b0 c(&sm), b0 r(&b0 p), b0 d(&b0 p),
*b0 w = b0 d, b0 p = b0 w + 1, b0 w(next), b0 c(next),
b2 c(&pimm), b2 r(&al0 r), nop(), b2 c(next);

pimm = 0x1234, b0_c(&sm), b0_r(&sm), b0_d(&b0_p),
b0 bus = *b0 r, b0 p = b0 w + pimm,
b0 c(next), b0 w(next),
b2 c(&pimm), b2 r(&ald r),
b2 bus = *b2 r, b2 p = b2 w + 2,
b2 c(next);

Doc. Number: 501-0004 117

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

9 ACU Data Memory 0/3 with immediate instruction

9.1 syntax

{pimm clause}
{b0_see clause} {b0 op clause} {b0 update clause}
{b3 see clause} {b3 op clause} {b3 update clause};

9.2 description
e The pimm register is loaded with the specified value; (see 4.2.4.4).
e The input multiplexers for each of the Data Memory Bus 0 ACU registers are
configured to select the indicated sources (the absence of a specified source

is still a source and often (but not always) selects the pimm register).

e The input multiplexers for each of the Data Memory Bus 3 ACU registers are
configured as specified.

e The memory read or write specified by the ACUO Operation Clause is
performed, in the DMEM pipeline stage.

e The memory read or write specified by the ACU3 Operation Clause is
performed, in the DMEM pipeline stage.

e The registers specified by the ACUQ Update Clause are updated.

e The registers specified by the ACU3 Update Clause are updated.

9.3 flags affected

none.

9.4 examples

pimm = OxBABE, b0 c(&sm), b0 r(&b0 p), b0 d(&b0 p),
*b0 w = b0 d, b0 p = b0 w + 1, b0 w(next), b0 c(next),
b3 c(&pimm), b3 r(&al0 r), nop(), b3 c(next);

pimm = 0x1234, b0_c(&sm), b0_r(&sm), b0_d(&b0_p),
b0 bus = *b0 r, b0 p = b0 w + pimm, b0 c(next),
b0 w(next), b3 c(&pimm), b3 r(&al0 r), b3 bus = *b3 r,
b3 p = b3 w + 2, b3 c(next);

Doc. Number: 501-0004 118

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

10 ACU Data Memory 1/0 with immediate instruction

10.1 syntax

{pimm clause}
{b1 see clause} {bl op clause} {bl update clause}
{b0 _see clause} {b0 op clause} {b0 update clause}

10.2 description
e The pimm register is loaded with the specified value; (see 4.2.4.4).
e The input multiplexers for each of the Data Memory Bus 1 ACU registers are
configured to select the indicated sources (the absence of a specified source

is still a source and often (but not always) selects the pimm register).

e The input multiplexers for each of the Data Memory Bus 0 ACU registers are
configured as specified.

e The memory read or write specified by the ACU1 Operation Clause is
performed, in the DMEM pipeline stage.

e The memory read or write specified by the ACUQ Operation Clause is
performed, in the DMEM pipeline stage.

e The registers specified by the ACU1 Update Clause are updated.

e The registers specified by the ACUQ Update Clause are updated.

10.3 flags affected

none.

10.4 examples

pimm = OxBABE, bl c(&sm), bl r(&bl p), bl d(&bl p),
*bl w = bl d, bl p = bl w + 1, bl w(next), bl c(next),
b0 c(&pimm), b0 r(&al0 r), nop(), b0 c(next);

pimm = 0x1234, bl c(&sm), bl r(&sm), bl d(&bl_p),
bl bus = *bl r, bl p = bl w + pimm,
bl c(next), bl w(next),
b0 c(&pimm), b0 r(&ald r),
b0 bus = *b0 r, b0 p = b0 w + 2,
b0 c(next);

Doc. Number: 501-0004 119

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

11 ACU Data Memory 1/2 with immediate instruction

11.1 syntax

{pimm clause}
{b1 see clause} {bl op clause} {bl update clause}
{b2 see clause} {b2 op clause} {b2 update clause};

11.2 description
e The pimm register is loaded with the specified value; (see 4.2.4.4).
e The input multiplexers for each of the Data Memory Bus 1 ACU registers are
configured to select the indicated sources (the absence of a specified source

is still a source and often (but not always) selects the pimm register).

e The input multiplexers for each of the Data Memory Bus 2 ACU registers are
configured as specified.

e The memory read or write specified by the ACU1 Operation Clause is
performed, in the DMEM pipeline stage.

e The memory read or write specified by the ACU2 Operation Clause is
performed, in the DMEM pipeline stage.

e The registers specified by the ACU1 Update Clause are updated.

e The registers specified by the ACU2 Update Clause are updated.

11.3 flags affected

none.

11.4 examples

pimm = OxBABE, bl c(&sm), bl r(&bl p), bl d(&bl p),
*bl w = bl d, bl p = bl w + 1, bl w(next), bl c(next),
b2 c(&pimm), b2 r(&al0 r), nop(), b2 c(next);

pimm = 0x1234, bl c(&sm), bl r(&sm), bl d(&bl_p),
bl bus = *bl r, bl p = bl w + pimm, bl c(next),
bl w(next), b2 c(&pimm), b2 r(&al0 r), b2 bus = *b2 r,
b2 p = b2 w + 2, b2 c(next);

Doc. Number: 501-0004 120

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

12 ACU Data Memory 1/3 with immediate instruction

12.1 syntax

{pimm clause}
{b1 see clause} {bl op clause} {bl update clause}
{b3 see clause} {b3 op clause} {b3 update clause};

12.2 description
e The pimm register is loaded with the specified value; (see 4.2.4.4).
e The input multiplexers for each of the Data Memory Bus 1 ACU registers are
configured to select the indicated sources (the absence of a specified source

is still a source and often (but not always) selects the pimm register).

e The input multiplexers for each of the Data Memory Bus 3 ACU registers are
configured as specified.

e The memory read or write specified by the ACU1 Operation Clause is
performed, in the DMEM pipeline stage.

e The memory read or write specified by the ACU3 Operation Clause is
performed, in the DMEM pipeline stage.

e The registers specified by the ACU1 Update Clause are updated.

e The registers specified by the ACU3 Update Clause are updated.

12.3 flags affected

none.

12.4 examples

pimm = OxBABE, bl c(&sm), bl r(&bl p), bl d(&bl p),
*bl w = bl d, bl p = bl w + 1, bl w(next), bl c(next),
b3 c(&pimm), b3 r(&al0 r), nop(), b3 c(next);

pimm = 0x1234, bl c(&sm), bl r(&sm), bl d(&bl_p),
bl bus = *bl r, bl p = bl w + pimm,
bl c(next), bl w(next),
b3 c(&pimm), b3 r(&ald r),
b3 bus = *b3 r, b3 p = b3 w + 2, b3 c(next);

Doc. Number: 501-0004 121

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

13 ACU Data Memory 2/0 with immediate instruction

13.1 syntax

{pimm clause}
{b2 see clause} {b2 op clause} {b2 update clause};
{b0_see clause} {b0 op clause} {b0 update clause}

13.2 description
e The pimm register is loaded with the specified value; (see 4.2.4.4).
e The input multiplexers for each of the Data Memory Bus 2 ACU registers are
configured to select the indicated sources (the absence of a specified source

is still a source and often (but not always) selects the pimm register).

e The input multiplexers for each of the Data Memory Bus 0 ACU registers are
configured as specified.

e The memory read or write specified by the ACU2 Operation Clause is
performed, in the DMEM pipeline stage.

e The memory read or write specified by the ACUQ Operation Clause is
performed, in the DMEM pipeline stage.

e The registers specified by the ACU2 Update Clause are updated.

e The registers specified by the ACUQ Update Clause are updated.

13.3 flags affected

none.

13.4 examples

pimm = OxBABE, b2 c(&sm), b2 r(&b2 p), b2 d(&b2 p),
*b2 w = b2 d, b2 p = b2 w + 1, b2 w(next), b2 c(next),
b0 c(&pimm), b0 r(&al0 r), nop(), b0 c(next);

pimm = 0x1234, b2 c(&sm), b2 r(&sm), b2 _d(&b2_p),
b2 bus = *b2 r, b2 p = b2 w + pimm,
b2 c(next), b2 w(next),
b0 c(&pimm), b0 r(&ald r),
b0 bus = *b0 r, b0 p = b0 w + 2,
b0 c(next);

Doc. Number: 501-0004 122

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

14 ACU Data Memory 2/1 with immediate instruction

14.1 syntax

{pimm clause}
{b2 see clause} {b2 op clause} {b2 update clause};
{bl see clause} {bl op clause} {bl update clause};

14.2 description
e The pimm register is loaded with the specified value; (see 4.2.4.4).
e The input multiplexers for each of the Data Memory Bus 2 ACU registers are
configured to select the indicated sources (the absence of a specified source

is still a source and often (but not always) selects the pimm register).

e The input multiplexers for each of the Data Memory Bus 1 ACU registers are
configured as specified.

e The memory read or write specified by the ACU2 Operation Clause is
performed, in the DMEM pipeline stage.

e The memory read or write specified by the ACU1 Operation Clause is
performed, in the DMEM pipeline stage.

e The registers specified by the ACU2 Update Clause are updated.

e The registers specified by the ACU1 Update Clause are updated.

14.3 flags affected

none.

14.4 examples

pimm = OxBABE, b2 c(&sm), b2 r(&b2 p), b2 d(&b2 p),
*b2 w = b2 d, b2 p = b2 w + 1, b2 w(next), b2 c(next),
bl c(&pimm), bl r(&al0 r), nop(), bl c(next);

pimm = 0x1234, b2 c(&sm), b2 r(&sm), b2 d(&b2 p),
b2 bus = *b2 r, b2 p = b2 w + pimm,
b2 c(next), b2 w(next),
bl c(&pimm), bl r(&al r),
bl bus = *bl r, bl p = bl w + 2,
bl c(next);

Doc. Number: 501-0004 123

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

15 ACU Data Memory 2/3 with immediate instruction

15.1 syntax

{pimm clause}
{b2 see clause} {b2 op clause} {b2 update clause};
{b3 see clause} {b3 op clause} {b3 update clause};

15.2 description
e The pimm register is loaded with the specified value; (see 4.2.4.4).
e The input multiplexers for each of the Data Memory Bus 2 ACU registers are
configured to select the indicated sources (the absence of a specified source

is still a source and often (but not always) selects the pimm register).

e The input multiplexers for each of the Data Memory Bus 3 ACU registers are
configured as specified.

e The memory read or write specified by the ACU2 Operation Clause is
performed, in the DMEM pipeline stage.

e The memory read or write specified by the ACU3 Operation Clause is
performed, in the DMEM pipeline stage.

e The registers specified by the ACU2 Update Clause are updated.

e The registers specified by the ACU3 Update Clause are updated.

15.3 flags affected

none.

15.4 examples

pimm = OxBABE, b2 c(&sm), b2 r(&b2 p), b2 d(&b2 p),
*b2 w = b2 d, b2 p = b2 w + 1, b2 w(next), b2 c(next),
b3 c(&pimm), b3 r(&al0 r), nop(), b3 c(next);

pimm = 0x1234, b2 c(&sm), b2 r(&sm), b2 _d(&b2_p),
b2 bus = *b2 r, b2 p = b2 w + pimm,
b2 c(next), b2 w(next),
b3 c(&pimm), b3 r(&ald r),
b3 bus = *b3 r, b3 p = b3 w + 2,
b3 c(next);

Doc. Number: 501-0004 124

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

16 ACU Data Memory 3/0 with immediate instruction

16.1 syntax

{pimm clause}
{b3 see clause} {b3 op clause} {b3 update clause};
{b0_see clause} {b0 op clause} {b0 update clause}

16.2 description
e The pimm register is loaded with the specified value; (see 4.2.4.4).
e The input multiplexers for each of the Data Memory Bus 3 ACU registers are
configured to select the indicated sources (the absence of a specified source

is still a source and often (but not always) selects the pimm register).

e The input multiplexers for each of the Data Memory Bus 0 ACU registers are
configured as specified.

e The memory read or write specified by the ACU3 Operation Clause is
performed, in the DMEM pipeline stage.

e The memory read or write specified by the ACUQ Operation Clause is
performed, in the DMEM pipeline stage.

e The registers specified by the ACU3 Update Clause are updated.

e The registers specified by the ACUQ Update Clause are updated.

16.3 flags affected

none.

16.4 examples

pimm = OxBABE, b3 c(&sm), b3 r(&32 p), b3 d(&b3 p),
*b3 w = b3 d, b3 p = b3 w + 1, b3 w(next), b3 c(next),
b0 c(&pimm), b0 r(&al0 r), nop(), b0 c(next);

pimm = 0x1234, b3_c(&sm), b3_r(&sm), b3_d(&b3_p),
b3 bus = *b3 r, b3 p = b3 w + pimm,
b3 c(next), b3 w(next),
b0 c(&pimm), b0 r(&ald r),
b0 bus = *b0_r, b0 p = b0 w + 2,
b0 c(next);

Doc. Number: 501-0004 125

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

17 ACU Data Memory 3/1 with immediate instruction

17.1 syntax

{pimm clause}
{b3 see clause} {b3 op clause} {b3 update clause};
{bl see clause} {bl op clause} {bl update clause};

17.2 description
e The pimm register is loaded with the specified value; (see 4.2.4.4).
e The input multiplexers for each of the Data Memory Bus 3 ACU registers are
configured to select the indicated sources (the absence of a specified source

is still a source and often (but not always) selects the pimm register).

e The input multiplexers for each of the Data Memory Bus 1 ACU registers are
configured as specified.

e The memory read or write specified by the ACU3 Operation Clause is
performed, in the DMEM pipeline stage.

e The memory read or write specified by the ACU1 Operation Clause is
performed, in the DMEM pipeline stage.

e The registers specified by the ACU3 Update Clause are updated.

e The registers specified by the ACU1 Update Clause are updated.

17.3 flags affected

none.

17.4 examples

pimm = OxBABE, b3 c(&sm), b3 r(&b3 p), b3 d(&b3 p),
*b3 w = b3 d, b3 p = b3 w + 1, b3 w(next), b3 c(next),
bl c(&pimm), bl r(&al0 r), nop(), bl c(next);

pimm = 0x1234, b3 c(&sm), b3 r(&sm), b3 d(&b3 p),
b3 bus = *b3 r, b3 p = b3 w + pimm,
b3 c(next), b3 w(next),
bl c(&pimm), bl r(&al r),
bl bus = *bl r, bl p = bl w + 2,
bl c(next);

Doc. Number: 501-0004 126

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

18 ACU Data Memory 3/2 with immediate instruction

18.1 syntax

{pimm clause}
{b3 see clause} {b3 op clause} {b3 update clause};
{b2 see clause} {b2 op clause} {b2 update clause};

18.2 description
e The pimm register is loaded with the specified value; (see 4.2.4.4).
e The input multiplexers for each of the Data Memory Bus 3 ACU registers are
configured to select the indicated sources (the absence of a specified source

is still a source and often (but not always) selects the pimm register).

e The input multiplexers for each of the Data Memory Bus 2 ACU registers are
configured as specified.

e The memory read or write specified by the ACU3 Operation Clause is
performed, in the DMEM pipeline stage.

e The memory read or write specified by the ACU2 Operation Clause is
performed, in the DMEM pipeline stage.

e The registers specified by the ACU3 Update Clause are updated.

e The registers specified by the ACU2 Update Clause are updated.

18.3 flags affected

none.

18.4 examples

pimm = OxBABE, b3 c(&sm), b3 r(&b3 p), b3 d(&b3 p),
*b3 w = b3 d, b3 p = b3 w + 1, b3 w(next), b3 c(next),
b2 c(&pimm), b2 r(&al0 r), nop(), b2 c(next);

pimm = 0x1234, b3 c(&sm), b3 r(&sm), b3 d(&b3 p),
b3 bus = *b3 r, b3 p = b3 w + pimm,
b3 c(next), b3 w(next),
b2 c(&pimm), b2 r(&ald r),
b2 bus = *b2 r, b2 p = b2 w + 2,
b2 c(next);

Doc. Number: 501-0004 127

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

19 ALU-ACU instruction

19.1 syntax
{alu0 _op clause}{alu0 update clause}
{bus0 _op clause}{bus0 update clause}
{busl op clause}{busl update clause}
(bus2 op clause) {bus2 update clause}

{bus3 op clause}{bus3 update clause} ;

19.2 description

o The specified ALUO operation is performed; (see 4.2.4.8.1).

The specified ACUOQ operation is performed; (see 4.2.4.8.5).
e The specified ACU1 operation is performed; (see 4.2.4.8.6).
e The specified ACU2 operation is performed; (see 4.2.4.8.7).
o The specified ACU3 operation is performed; (see 4.2.4.8.8).

o The ALUO registers which are specifically indicated in the update clause will
be written; (see 4.2.4.9.1).

e The ACUO registers which are specifically indicated in the update clause will
be written; (see 4.2.4.9.5).

e The ACU1 registers which are specifically indicated in the update clause will
be written; (see 4.2.4.9.6).

e The ACU2 registers which are specifically indicated in the update clause will
be written; (see 4.2.4.9.7).

o The ACUS3 registers which are specifically indicated in the update clause will
be written; (see 4.2.4.9.8).

19.3 flags affected

ALUO flags, according to the operation and if a0_f(next) is specified in the ALUO
update clause.

Doc. Number: 501-0004 128

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

19.4 examples

(a0 x + a0_y), a0 s(next),
*b0 w = b0 d, b0 p = b0 w + 1, b0 w(next), b0 c(next),
bl c(&pimm), bl r(&a0 r), nop(),
b2 c(&pimm), b2 r(&a0 r), nop(),
b3 c(&pimm), b3 r(&ald r), nop();

(logic) (a0_x << a0 _yI[3:01),

a0 x(next), a0 _y(next), al0_s(next), al0_f (next),
b0 c(&sm), b0 r(&b0 p), b0 d(&b0 p),
*b0 w = b0 4, bO p = b0 w + 1,
b0 w(next), b0 c(next),
bl c(&sm), bl r(&sm), bl d(&bl p),
bl bus = *bl r, bl p = bl w + pimm,
bl c(next), bl w(next),
b2 c(&pimm), b2 r(&al r),
b2 bus = *b2 r, b2 p = b2 w + 2,
b2 c(next),
b3 c(&pimm), b3 r(&al r),
nop (),
b3 c(next);

// a comment for that instruction seems in order here.

Doc. Number: 501-0004 129

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

20 ALUO with Immediate instruction
20.1 syntax
{pimm clause}

{alu0 see clause}{alu0 op clause}{alu0 update clause} ;

20.2 description
e The pimm register is loaded with the specified value; (see 4.2.4.4).
e The input multiplexers for each of the ALUOQ registers are configured to select
the indicated sources (the absence of a specified source is still a source and
often (but not always) selects the pimm register); (see 4.2.4.7.1).

e The specified ALUO operation is performed; (see 4.2.4.8.1).

e The ALUO registers which are specifically indicated in the update clause will
be written; (see 4.2.4.9.1).

20.3 flags affected

ALUO flags, according to the operation and if a0_f(next) is specified in the update
clause.

20.4 examples

pimm 0x1234, a0 y(&pimm), a0 xl1 & a0 yl, a0 f(next);

pimm OxFADE, a0 x(&m0), a0 y(&ml), a0 s(&al0), a0 x1 + a0 yl,

a0 x(next), a0 y(next), a0 s(next), a0 f(next);

Doc. Number: 501-0004 130

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

21 ALUO-MACO instruction

21.1 syntax

{alu0_see clause}{alu0 op clause}{alu0 update clause}

{mac0 see clause}{mac0 op clause}{mac0O update clause} ;

21.2 description

The input multiplexers for each of the ALUO registers are configured to select
the indicated sources (the absence of a specified source is still a source and
often (but not always) selects the pimm register); (see 4.2.4.7.1).

The input multiplexers for each of the MACO registers are configured to select
the indicated sources (the absence of a specified source is still a source and
often (but not always) selects the pimm register); (see 4.2.4.7.2).

The specified ALUO operation is performed; (see 4.2.4.8.1).

The specified MACO operation is performed; (see 4.2.4.8.2).

The ALUO registers which are specifically indicated in the update clause will
be written; (see 4.2.4.9.1).

The MACO registers which are specifically indicated in the update clause will
be written; (see 4.2.4.9.2).

21.3 flags affected

ALUO flags, according to the operation and if a0_f(next) is specified in the ALUO
update clause.

MACO flags, according to the operation and if m0_f(next) is specified in the MACO
update clause.

21.4 examples

a0 y(&pimm), a0 x1 & a0 yl, a0 f(next),

m0 x(&al0), (m0 x * mO0 y), mO0 f(next);

a0 x(&m0), a0 y(&ml), a0 s(&al), a0 xl1 + a0 yl , a0 x(next),

a0 y(next), a0 s(next), a0 f(next),

m0 x(&a0l0), m0 y(&ml), mO0 s (&m0), mO_ £ (&m0),

m0 s[39:0] + (m0 x * m0_y),

m0_ x(next), m0_y(next), m0 s(next), mO0_ f (next);

Doc. Number: 501-0004 131

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

22 ALUO-MAC1 instruction

22.1 syntax

{alu0_see clause}{alu0 op clause}{alu0 update clause}

{macl see clause}{macl op clause}{macl update clause} ;

22.2 description

The input multiplexers for each of the ALUO registers are configured to select
the indicated sources (the absence of a specified source is still a source and
often (but not always) selects the pimm register); (see 4.2.4.7.1).

The input multiplexers for each of the MAC1 registers are configured to select
the indicated sources (the absence of a specified source is still a source and
often (but not always) selects the pimm register); (see 4.2.4.7.3).

The specified ALUO operation is performed; (see 4.2.4.8.1).

The specified MAC1 operation is performed; (see 4.2.4.8.3).

The ALUO registers which are specifically indicated in the update clause will
be written; (see 4.2.4.9.1).

The MAC1 registers which are specifically indicated in the update clause will
be written; (see 4.2.4.9.3).

22.3 flags affected

ALUO flags, according to the operation and if a0_f(next) is specified in the ALUO
update clause.

MACH1 flags, according to the operation and if m0_f(next) is specified in the MACO
update clause.

22.4 examples

a0 y(&pimm), a0 x1 & a0 yl, a0 f(next),

ml x(&a0l0), (ml x * ml y), ml f(next);

a0 x(&m0), a0 y(&ml), a0 s(&al), a0 xl1 + a0 yl,

a0 x(next), a0 y(next), a0 s(next), a0 f(next),
ml x(&a0l0), ml y(&m0), ml s(&ml), ml f(&ml),

ml s[39:0] + (ml x * ml y),

ml x(next), ml y(next), ml s(next), ml f (next);

Doc. Number: 501-0004 132

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

23 Branch instruction

23.1 syntax
pc = {hexadecimal target address} , flush();
pc = {hexadecimal target address} ;

23.2 description

The Program Counter (PC) register is set to the specified address and the machine
begins fetching and executing the sequence of instructions starting at that point.

This DSP is a pipelined machine with a branch penalty of 3 cycles. The branch
instruction has two forms which allow the selection of the desired pipeline operation
during the branch.

In the first form of the instruction, the instruction pipeline is flushed once the branch
instruction is executed. The flush operation will eliminate the instructions already in
the prefetch, fetch, and decode stages of the pipeline. The resultant 3 stage bubble
in the pipeline is the branch penalty. This case is roughly equivalent to following the
branch with 3 nop () instructions and not flushing the pipeline.

In the second form of the instruction, the pipeline is not flushed. The 3 instructions
immediately after the branch instruction will already be in the pipeline by the time
the branch instruction is executed. These instructions will be in the decode, fetch,
and prefetch stages, respectively, of the pipeline. The 3 instructions are run to
completion while the DSP begins fetching instruction from the new address into the
pipeline. In this form of the instruction there is no bubble introduced into the pipeline
and no performance penalty exists.

23.3 flags affected

none.

23.4 examples
pc = 0x1234, flush();
pc = 0x1234; nop(); nop(); nop(); // same as with flush

pc = 0x1234;

pimm = 0x0001, a0 y(&pimm), a0 y(next); // load ptr inc.

a0 s(&a0), a0 r(&al s), (a0 x + a0 y), a0 s(next); // add

b0 d(&a0 r), *b0 w = b0 d, b0 p = b0 w+1l, b3 d(&pimm), nop():;
// pointer now written back.
// instruction at 0x1234 now follows immediately in pipeline.

Doc. Number: 501-0004 133

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

24 Call instruction

24.1 syntax
call ({hexadecimal target address}) , f£lush();

call ({hexadecimal target address});

24.2 description

The program counter (PC) register value is incremented, and pushed onto the stack
and program execution jumps to the specified address in and the machine begins
fetching and executing the sequence of instructions starting at that point.

This DSP is a pipelined machine with a branch penalty of 3 cycles. The call
instruction has two forms which allow the selection of the desired pipeline operation
during the branch.

In the first form of the instruction, the instruction pipeline is flushed once the call
instruction is executed. The flush operation will eliminate the instructions already in
the prefetch, fetch, and decode stages of the pipeline. The resultant 3 stage bubble
in the pipeline is the branch penalty. This case is roughly equivalent to following the
call with 3 nop() instructions and not flushing the pipeline.

In the second form of the instruction, the pipeline is not flushed. The 3 instructions
immediately after the call instruction will already be in the pipeline by the time the
branch instruction is executed. These instructions will be in the decode, fetch, and
prefetch stages, respectively, of the pipeline. The 3 instructions are run to completion
while the DSP begins fetching instruction from the new address into the pipeline. In
this form of the instruction there is no bubble introduced into the pipeline and no
performance penalty exists.

24.3 flags affected

none.

24.4 examples
call (0x1234), flush():;
call(0x1234); nop(); nop(); nop(); // same as with flush

call (0x1234);

pimm = 0x0001, a0 y(&pimm), a0 y(next); // load ptr inc.

a0 s(&al), a0 r(&a0 s), (a0 x + a0 y), a0 s(next); // add

b0 d(&a0 r), *b0 w = b0 d, bO p = b0 w+1l, b3 d(&pimm), nop():;
// pointer now written back.
// instruction at 0x1234 now follows immediately in pipeline.

Doc. Number: 501-0004 134

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

25 Configuration Register load instruction

25.1 syntax

config = {configuration clause} ;

25.2 description
the 'config' register is loaded with the specified value.
The tokens in the configuration clause are joined with any mix of plus ‘+ or bar ‘|’
characters (which perform a logical OR operation) or the ampersand '&' character
(which performs a logical AND operation.)

The precedence of the OR and AND operations are strictly left to right.

See also 3.3.7 Configuration Register and 4.2.4.5 Configuration clause.

25.3 flags affected

none.

25.4 examples

config = OxDEAD; // magic numbers are bad.
Config = ml(fract) | ml(round) & 0x42; // magicnums still bad.
config = alO(sat) + mO(fract), ml(int) | ml(round) + bO(lin) +

b3(lin) + b2(circ) + b3 (circ);

Doc. Number: 501-0004 135

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

26 DMA Configuration Register load instruction

26.1 syntax

dmaconfig = {dmaconfiguration clause} ;

26.2 description
The dmaconfig register is loaded with the specified values.
The tokens in the configuration clause are joined with any mix of plus ‘+ or bar ‘|’
characters (which perform a logical OR operation) or the ampersand '&' character
(which performs a logical AND operation.)

The precedence of the OR and AND operations are strictly left to right.

See also 3.3.6 DMA Configuration Register and 4.2.4.6 DMA Configuration clause.

26.3 flags affected

none.

26.4 examples

dmaconfig O0xDEAD; // magic numbers are bad.
dmaconfig see dma(on) + dab(l) + adb(l) + daen(on) +
aden (on) ;

Doc. Number: 501-0004 136

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

27 If (conditional execution) instruction

27.1 syntax

if({conditional test}) {permissible instruction};
27.2 description
The test of a machine flag against a specified condition is performed. If the test

evaluates to FALSE, the program counter (pc) is simply incremented. If the test
evaluates to TRUE, the specified “permissible” instruction is executed.

A permissible_instruction is one of: branch, call, return.

The conditional _test has three forms. The form is one of:

{testable flag}{equality test}{logic value}
or

{testable acu pointer}{equality test}{acu end pointer}
or

{iteration register}-- {equality test} 0

The testable flag is any one of the flags of ALUO (see 3.4.4), MACO (see 3.5.4),
MAC1 (see 3.6.4) or ‘XF’ the externally testable hardware flag.

The equality test is either of “==" or “1=" as desired by the programmer.

The logic_value is any of “0” or “false” or “reset” to syntactically select logical zero.
To select logical one, any of “1” or “true” or “set” may be used.

The second form of the conditional_test is:

{testable acu pointer}{equality test}{acu end pointer}

The testable _acu_pointer is any of the read or write registers in one of the four ACUs
(see 3.8.2 or 3.8.3 for ACUOQ registers, other sections as appropriate for the other
ACUs).

The equality test is either of “==" or “1=" as desired by the programmer.

The acu_end _pointer is the end (circular buffer) pointer register (noted as one of
b0 e, bl e, b2 e, b3 e, as appropriate) in the same ACU as the specified
testable_acu_pointer.

The third form form of the instruction is used to test and decrement one of the two
interation counter registers: iterate0 or iteratel. The test is whether or not the

register is equal to zero (“== 0”) or not (“!= 0”), and the register is always

decremented by the execution of this instruction. Note the “--" suffixed to the
register name.

Doc. Number: 501-0004 137

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0
DSP pipeline is designed so that conditionals are treated as “branch not taken”

cases: in the event that the conditional evaluates to TRUE the branch penalty is 3
cycles.

27.3 flags affected

none.

27.4 examples

if (al0z == set) call(0x1234);
if (mO0eov == 0) return();
if (al0gt != TRUE) pc = 0x1234;

if (b0 r != b0 e) pc = 0x1234;
if (b3 w == b3 e) return();

if (iterateO-- !
if (iteratel-- =

0) pc = myloop;
0) call(sub sample);

Doc. Number: 501-0004 138

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

28 lterate instruction

28.1 syntax

{iteration counter register} = {count} ;

28.2 description

the iteration counter register (iterate0 or iteratel) is loaded with the specified
count. The count may be any value from 0 to 65535 (Oxffff).

28.3 flags affected

none.

28.4 examples

0x1234;
42;

iterate0
iteratel

Doc. Number: 501-0004 139

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

29 MACO with Immediate instruction

29.1 syntax
{pimm clause}

{mac0 see clause}{mac0 op clause}{macO0 update clause} ;

29.2 description
e The pimm register is loaded with the specified value; (see 4.2.4.4).
e The input multiplexers for each of the MACO registers are configured to select
the indicated sources (the absence of a specified source is still a source and
often (but not always) selects the pimm register); (see 4.2.4.7.2).

e The specified MACO operation is performed; (see 4.2.4.8.2).

e The registers which are specifically indicated in the update clause will be
written; (see 4.2.4.9.2).

29.3 flags affected

MACO flags, according to the operation and if m0_f(next) is specified in the update
clause.

29.4 examples

pimm 0x1234, mO0 y(&pimm), (m0 x * mO0 y), mO0 f(next);

pimm OxFADE, mO0 x(&a0), mO0 y(&ml), mO0 s(&m0O), mO0 f (&m0),
mO0 s[39:0] + (m0O x * mO y) , mO x(next), mO0 y(next),

m0_ s (next), m0_ £ (next);

Doc. Number: 501-0004 140

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

30 MACO0-MAC1 instruction

30.1 syntax

{mac0_see clause}{mac0 op clause}{mac0 update clause}

{macl see clause}{macl op clause}{macl update clause} ;

30.2 description

The input multiplexers for each of the MACO registers are configured to select
the indicated sources (the absence of a specified source is still a source and
often (but not always) selects the pimm register); (see 4.2.4.7.2).

The input multiplexers for each of the MAC1 registers are configured to select
the indicated sources (the absence of a specified source is still a source and
often (but not always) selects the pimm register); (see 4.2.4.7.3).

The specified MACO operation is performed; (see 4.2.4.8.2).

The specified MAC1 operation is performed; (see 4.2.4.8.3).

The MACO registers which are specifically indicated in the update clause will
be written; (see 4.2.4.9.2).

The MAC1 registers which are specifically indicated in the update clause will
be written; (see 4.2.4.9.3).

30.3 flags affected

MACO flags, according to the operation and if m0_f(next) is specified in the MACO
update clause.

MACH1 flags, according to the operation and if m1_f(next) is specified in the MAC1
update clause.

30.4 examples

m0 x(&al0), (m0 x*mO0 y), mO f(next), ml f£(&ml), (ml x*ml y);

m0 x(&a0l0), m0 y(&ml), mO0 s(&mO0), mO f(&m0), mO0 s[39:0] + (mO0 x

* m0 y) , mO x(next), mO0 y(next), m0 s (next),

m0 f (next), ml x(&al0), ml y(&m0O0), ml s(&ml), ml f(&ml),
ml s[39:0] - (ml x * ml y) , ml x(next), ml y(next),

ml s (next), ml £ (next);

Doc. Number: 501-0004 141

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

31 MAC0-MAC1-ACU Instruction

31.1 syntax

{mac0_op clause}{mac0 update clause}

{macl op clause}{macl update clause}

{bus0 _op clause}{bus0 update clause}

{busl op clause}{busl update clause}

(bus2 op clause) {bus2 update clause}

{bus3 op clause}{bus3 update clause} ;

31.2 description

The specified MACO operation is performed; (see 4.2.4.8.2).
The specified MAC1 operation is performed; (see 4.2.4.8.3).
The specified ACUO operation is performed; (see 4.2.4.8.5).
The specified ACU1 operation is performed; (see 4.2.4.8.6).
The specified ACU2 operation is performed; (see 4.2.4.8.7).
The specified ACU3 operation is performed; (see 4.2.4.8.8).

The MACO registers which are specifically indicated in the update clause will
be written; (see 4.2.4.9.2).

The MACH1 registers which are specifically indicated in the update clause will
be written; (see 4.2.4.9.3).

The ACUO registers which are specifically indicated in the update clause will
be written; (see 4.2.4.9.5).

The ACU1 registers which are specifically indicated in the update clause will
be written; (see 4.2.4.9.6).

The ACU2 registers which are specifically indicated in the update clause will
be written; (see 4.2.4.9.7).

The ACUS registers which are specifically indicated in the update clause will
be written; (see 4.2.4.9.8).

Doc. Number: 501-0004 142

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

31.3 flags affected

MACO flags, according to the operation and if m0_f(next) is specified in the MACO
update clause.

MAC1 flags, according to the operation and if m1_f(next) is specified in the MAC1
update clause.

31.4 examples

(m0 x*m0 y), mO f(next), (ml x*ml y),
b0 c(&sm), b0 r(&b0 p), b0 d(&b0 p),
*b0 w = b0 d, b0 p = b0 w + 1, b0 w(next), b0 c(next),
bl c(&pimm), bl r(&al0 r), nop(),
b2 c(&pimm), b2 r(&al0 r), nop(),
b3 c(&pimm), b3 r(&al0 r), nop():;

m0 s[39:0] + (m0 x * m0_y),
m0_x(next), m0_y(next), mO0 s (next), mO0_f (next),
ml s[39:0] - (ml x * ml y),
ml x(next), ml y(next), ml s(next), ml f(next),
b0 c(&sm), b0 r(&b0 p), b0 d(&b0 p),
*b0 w = b0 d, b0 p = b0 w + 1,
b0 w(next), b0 c(next),
bl c(&sm), bl r(&sm), bl d(&bl p),
bl bus = *bl r, bl p = bl w + pimm,
bl c(next), bl w(next),
b2 c(&pimm), b2 r(&ald r),
b2 bus = *b2 r, b2 p = b2 w + 2,
b2 c(next),
b3 c(&pimm), b3 r(&ald r),
nop() ’
b3 c(next);
// a comment for that instruction seems in order here.

Doc. Number: 501-0004 143

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

32 MAC1 with Immediate instruction

32.1 syntax
{pimm clause}

{macl see clause}{macl op clause}{macl update clause} ;

32.2 description
e The pimm register is loaded with the specified value; (see 4.2.4.4).
e The input multiplexers for each of the MAC1 registers are configured to select
the indicated sources (the absence of a specified source is still a source and
often (but not always) selects the pimm register); (see 4.2.4.7.3).

e The specified MAC1 operation is performed; (see 4.2.4.8.3).

e The registers which are specifically indicated in the update clause will be
written; (see 4.2.4.9.3).

32.3 flags affected

MACH1 flags, according to the operation and if m1_f(next) is specified in the update
clause.

32.4 examples

pimm 0x1234, ml y(&pimm), (ml x * ml y), ml f(next);

pimm 0xBABE, ml x(&al0), ml y(&m0O), ml s(&ml), ml f(&ml),
ml s[39:0] + (ml x * ml y) , ml x(next), ml y(next),

ml s(next), ml £ (next);

Doc. Number: 501-0004 144

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

33 Nop instruction

33.1 syntax
nop () ;

pC++;
pc += 1;

33.2 description

no operation is performed. The program counter (pc) is incremented.

33.3 flags affected

none.

33.4 examples
nop () ;

pc++;
pc += 1;

Doc. Number: 501-0004 145

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

34 Repeat instruction

34.1 syntax

repeat = {hexadecimal repeat count} ;

34.2 description

the repeat counter register is loaded and the instruction immediately following in the
program memory is fetched and executed the specified number of times.

NB: The hardware does one more than the number which is actually loaded into the
register, however the assembler makes an adjustment in the machine level
instruction coding so that the register is actually loaded with one less than the source
code specified value, resulting in performance as indicated by the programmer.

NB: The minimum repeat count at the source code level is 2, the maximum is 65536.
These map to the machine code level constants 1 and 65535 (0xffff) respectively.

34.3 flags affected

the repeat instruction affects none, but the repeated instruction might do so.

34.4 examples

repeat = 0x1234;
nop () ;

Doc. Number: 501-0004 146

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

35 Return instruction

35.1 syntax
return(), flush():;

return() ;

35.2 description

The program counter (PC) register value is loaded from the stack and program
execution jumps to the new address in the program memory and the machine begins
fetching and executing the sequence of instructions starting at that point.

This DSP is a pipelined machine with a branch penalty of 3 cycles. The return
instruction has two forms which allow the selection of the desired pipeline operation
during the branch.

In the first form of the instruction, the instruction pipeline is flushed once the return
instruction is executed. The flush operation will eliminate the instructions already in
the prefetch, fetch, and decode stages of the pipeline. The resultant 3 stage bubble
in the pipeline is the branch penalty. This case is roughly equivalent to following the
return with 3 nop() instructions and not flushing the pipeline.

In the second form of the instruction, the pipeline is not flushed. The 3 instructions
immediately after the return instruction will already be in the pipeline by the time
the branch instruction is executed. These instructions will be in the decode, fetch,
and prefetch stages, respectively, of the pipeline. The 3 instructions are run to
completion while the DSP begins fetching instruction from the new address into the
pipeline. In this form of the instruction there is no bubble introduced into the pipeline
and no performance penalty exists.

35.3 flags affected

none.

35.4 examples

return(), £lush();
return(); nop(); nop(); nop(); // same as return(), flush();

return() ;
pimm = 0x0001, a0 y(&pimm), a0 y(next); // load ptr inc.
a0 s(&a0), a0 r(&a0 s), (a0 x + a0 _y), a0 s(next); // add
b0 d(&a0 r), *b0 w = b0 d, b0 p = b0 w+1l, b3 d(&pimm), nop():
// pointer now written back.
// instruction after original call now follows immediately
// in the pipeline.

Doc. Number: 501-0004 147

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

36 Scratch Memory/Pointer Cache with immediate instruction

36.1 syntax
{pimm clause}

{sm see clause}{sm op clause}{sm update clause} ;

36.2 description

the pimm register is loaded according to the Pimm_ Clause and the “serw” cache
pointer set for the data bus ACU’s are selected by the SM Register-See Clause. In
the SM Operation Clause the cache pointer write index register (sm_i) is set and the
sm memory operation (if any) is performed and the new value for the address
register (sm_a) is calculated. In the SM Update Clause the selected registers are
updated.

36.3 flags affected

none.

36.4 examples

pimm = 0x1234, sm s(&pimm), sm b0 (&sm serw[1l]),
sm bl (&sm serw[6]), sm i = 4, sm a = pimm, sm s(next);
pimm = OxDEAD, sm s(&sm), sm r(&sm),

sm b0 (&sm serw[7]), sm bl (&sm serw[4]),

sm b2 (&sm serw[4]), sm b3 (&sm serw[0]),

sm i = 0, sm = *sm a++,

sm_s(next), sm e(next), sm r(next), sm w(next);

/* fetch new pointers to cache set 0 (sm i=0) */
// note that address register is not updated!

// write back pointer set 5 (sm b2 see clause) to
// location “my ptr” in sm (sm i is ignored).
// assume that sm a already contains “my ptr” address.
pimm = useful value, sm b2 (&sm serw[5]), sm i=0,
*sm a = sm;

Doc. Number: 501-0004 148

NS85 Programmer Reference Manual v2_1.doc

Proprietary

Version: 2.1.0

37 Appendix — Instructions in Numerical Order

Instruction word [47:X]

Instruction type

0000 0000 0000 0000 0000 0000 00

Branch instruction

0000 0000 0000 0000 0000 0000 01

Call instruction

0000 0000 0000 0000 0000 0000 10

Return instruction

0000 0000 0000 0000 0000 0000 1111 0101

Iterate instruction (register 0)

0000 0000 0000 0000 0000 0000 1111 0110

Iterate instruction (register 1)

0000 0000 0000 0000 0000 0000 1111 0111

Repeat instruction

0000 0000 0000 0000 0000 0000 1111 1110

DMA Configuration Register load instruction

0000 0000 0000 0000 0000 0000 1111 1111

Configuration Register load instruction

0000 0000 0000 0000 0000 0001 00

Delayed Branch instruction (no pipeline flush)

0000 0000 0000 0000 0000 0001 01

Delayed Call instruction (no pipeline flush)

0000 0000 0000 0000 0000 0001 10

Delayed Return instruction (no pipeline flush)

0010 00 ALUO-MACQ instruction

0010 01 ALUO-MAC1 instruction

0010 10 ACU Data Memory 0/1 with immediate instruction
0010 11 ACU Data Memory 0/2 with immediate instruction
0011 00 ACU Data Memory 0/3 with immediate instruction
0011 01 ACU Data Memory 1/2 with immediate instruction
0011 10 ACU Data Memory 1/3 with immediate instruction
0011 11 ACU Data Memory 2/3 with immediate instruction
0100 00 MACO0-MACH1 instruction

0100 01 MACOQ with Immediate instruction

0100 10 MAC1 with Immediate instruction

Doc. Number: 501-0004

149

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

0100 11 ALUO with Immediate instruction

0101 00 Scratch Memory/Pointer Cache with immediate
instruction

0110 00 ACU configuration instruction

0110 01 MACO0-MAC1-ACU Instruction

011010 ALU-ACU instruction

Figure 37.1 - Instructions in Numerical Order

Doc. Number: 501-0004 150

Proprietary

Version: 2.1.0

444444443333333333222222222211111111110000000000

765432109876543210987654321098765432
| | | | |

109876543210
| .

PROG
FLOW

00000000000000000000000] Fes | 55

PROG CONDITION

ADDRESS

ITERATE
0

00000000000000000000000011110101

IMMEDIATE ITERATION COUNT

ITERATE
1

REPEAT

DMA
CONF

CON FIG

00000000000000000000000011110110

IMMEDIATE ITERATION COUNT

00000000000000000000000011110111

IMMEDIATE REPEAT COUNT

00000000000000000000000011111110

IMMEDIATE DMA CONFIGURATION VALUE

00000000000000000000000011111111

IMMEDIATE CONFIGURATION VALUE

Doc. Number: 501-0004 151

NS85 Programmer Reference Manual v2_1.doc

AO0,MO

AO,M1

M1,MO0

MO
IMM

M1
IMM

AO
IMM

Doc. Number: 501-0004

Proprietary

Version: 2.1.0

444444443333333333222222222211111111110000000000

76543210

98765432
| |

109876543210

98765432
| |

10987654
|

3210
|

AOF| AOOPCODE | A0 [AoX AOY AOR | ALUO REG UPDATES |Mo| Mo | MOR | MOREGUP | Mo | Mo X MO Y
O O 1 O O O SEE ggp SEE SEE SEE | FSHSLYH YL XH XL SEF OP| SEE | F S Y X ggp SEE SEE
AOF| AQOPCODE | A0 | A0X AOY AOR | ALUOREG UPDATES |M1| M1 | M1R | MIREGUP | M1 | M1X M1Y
O O 1 O O 1 SEE qS SEE SEE SEE |FSHSLYHYLXHXL | F|lOP| SEE | F S Y X S SEE SEE
SFF SFF SFF
M| M1 | MR | M1REGUP M1 X M1Y Mol Mo | MOR | MOREGUP | Mo | Mo X MO Y
0L000QE] oP| see [Fsvyx |5 | se SEE “O 00000 Jlop|see | Fsyx | s | seE SEE
Mol Mo | MOR | MoREG UP MO X MO Y IMMEDIATE VALUE
O:]_OOO:]_QEF OP | SEE | F s Y x| S | SEE sse DO0O000000
M| M1 | MR | M1REGUP M1 X M1Y IMMEDIATE VALUE
OlOOlOQEF oP| sEE | F sy x| S | SEE S ONONONONONONON0)
AOF| AOOPCODE | Ao | AOX AOY AOR | ALUO REG UPDATES IMMEDIATE VALUE
01001 Jjse= S | see | see | see [FsHsivnvixnxt |00

152

NS85 Programmer Reference Manual v2_1.doc

SM
IMM

BOB1
IMM

BOB2
IMM

BOB3
IMM

B1B2
IMM

B1B3
IMM

B2B3
IMM

ACU
CFIG

M1,MO
ACU

A0
ACU

Proprietary

Version: 2.1.0

444444443333333333222222222211111111110000000000
765432109876543210987654321098765432109876543210

SMOP SM UPDATES | SMBNK | SERW | sMBo | SMB1 | smMB2 | smB3 IMMEDIATE VALUE
O 1 O 1 O O CODE | AWRE S| IREG SEE SEE SEE SEE SEE
BOOP | Bo UPDATE | B0 |go| BOD BIOP | B1uPDATE| B! |g¢| B1D IMMEDIATE VALUE
00101Q coee |[pwRrcl|PR|ap| SEE | COPE | p w R c|PTR|ap| SEE
BO OP BO UPDATE | BO | gg| BOD B2 OP B2 UPDATE | B2 |pgy| B2D IMMEDIATE VALUE
0010117 cooe |pwRrc|PR|ap| SEE | CODE |p w R C|P™R |ap| SEE
BO OP BO UPDATE | BO | gg| BOD B3 OP B3 UPDATE | B3 |pg3| B3D IMMEDIATE VALUE
00110Q cooe |pwRr c|PR|ep| SEE | COPE [p w R c|P™R |ap| SEE
B1OP | g1 uPDATE | B! [g¢| B1D B20P | Bo UPDATE | B2 |go| B2D IMMEDIATE VALUE
O01101] coee [pwRr cl|PR|ap| SEE CODE p w R c|P™R|np| SEE
BIOP | g1uPDATE | B! [g¢| B1D B3OP | B3UPDATE | B3 |g3| B3D IMMEDIATE VALUE
O O l l l O CODE |p w R c| PR |ep| SEE CODE |p w R c|P™R|ep| SEE
B20P | g2 UPDATE | B2 |go| B2D B3OP | B3 UPDATE | B3 |g3| B3D IMMEDIATE VALUE
00111 (Q cooe |pwRr cl|PR|[ap| sEE CODE |p w R c|P™R|ap| SEE
B3 |gg| B3D | B2 [py] B2D B1 [g4] B1D | BO |gg| BOD | B3 UPDATE | B2 UPDATE | B1 UPDATE | BO UPDATE
OllOOOOOPTR cp| SEE [PTR[~p| SEE |[PTR|np| SEE |PTR |~pl SEE |[D W R C WRC|DWRGC|DWRTC
M1 REGUP | MOREG UP | M1 MO B3 OP B2 OP B1 OP BOOP | B3 UPDATE | B2 UPDATE | B1 UPDATE | BO UPDATE
01100100Q|FsyYXx|FsyX|op|OP| CODE | CODE | CODE | CODE [p w R c[p W R C|DWRC|DWRC
A0 OPCODE ALUO REG UPDATES | B3OP | B20P | B1OP | BOOP | B3 UPDATE | B2 UPDATE | B1 UPDATE | Bo UPDATE
OllOlOO OFSHSLYHYLXHXL CODE | CODE | CODE | cCobDE |D W R C WRC|DWRC|DWRC

Doc. Number: 501-0004

153

NS85 Programmer Reference Manual v2_1.doc Propnetary VerSIon . 2 . 1 . 0

38 Appendix — Using the Asm85 Assembler

38.1 Requirements

Asm85 is strictly text based, written in PERL, and best run in a unix-type environment.
(Windows native versions of PERL exist but have not been tested for this program.) Thus:

38.1.1 Operating Environment

Cygwin must be installed.

Don’t worry: it's free. (Cygwin/XFree86 is a port of XFree86 to Cygwin; Cygwin provides a
UNIX-like API on the Win32 platform. As of 2003-01-01 the supported Win32 platforms are

Windows 95, Windows 98, Windows Me, Windows NT 4.0, Windows 2000, and Windows XP.)
Visit http://www.cygwin.com/ for directions and download information. It’s easy!

The PERL language must be installed - usually it is /usr/bin/perl - make sure that /usr/bin/ is in
your path.

The Parse::RecDescent and Data::Dumper packages also must be installed.
In all likelihood, you'll get the current version of PERL and support packages when you

download the cygwin package. At the very least you will get an acceptable version of what you
need.

38.2 Invocation

Open a Cygwin bash shell window.

Change directory to where you keep your source code and a copy of the Asm85.pl file.
To assemble your source file named src_file you type the command:

perl asm85.pl -i src file

Asm85 will print the instruction words according to your source code.

38.2.1 Program options
The program has some options which may be used. The syntax for invoking Asm85 is
perl asm85.pl -i src file [-1] [-d] [-h] [-s]

The parameters in [brackets] are optional. They have the following function:

parameter function

-d Ignore the source file specified with the —i
option and run Asm85 using the internal test
code instead.

Doc. Number: 501-0004 154

http://www.cygwin.com/

NS85 Programmer Reference Manual v2_1.doc PrOprIetary VerSIon 2.1 .0

-h Print the help banner and exit. This option
overrides all other options.

-l List the source code and address information
along with the instruction words produced.

-S Print the source code file first, then process it.

38.2.2 Normal output example

The normal output from Asm85 is just one instruction word per line, printed in hex (no 0x prefix).
It might look like this:

$ perl asm85.pl -i src file

2c0£00000000
207001£fc0£00

end of source at LINE 27
$

38.2.3 Listing mode output example

The list mode output from Asm85 is verbose. Before the instruction word is printed in hex (no 0x
prefix), the address at which the instruction resides is printed in [braces]. The line number and
each line of source code is also printed. Note that in the current version of Asm85, the line(s) of
source code which produce a machine instruction may be printed immediately before or after
the instruction. (sorry.)

Using the same source file as in the previous example, but with some blank lines removed from
the output, it might look like what you find on the next page.

Doc. Number: 501-0004 155

NS85 Programmer Reference Manual v2_1.doc Propnetary Vers|0n . 2 . 1 . 0

$ perl asm85.pl -i src file -1

1: //
2: // my sample code with comments to init
3: // the alu and mac regs to zero

4: //
6: // zero the pimm reg and all the macl registers
[0000] 2c0£f00000000

8: pimm = 0x0000,
9: ml x(&pimm), ml y(&pimm), ml f(&pimm), ml s (&(long)pimm),

10: (ml x*ml y),

11: ml x(next), ml y(next), ml s(next), ml f(next);
12:

13: // now do all the alu regs and all the macO0 registers
14:

[0001] 207001£c0£00

15: a0 x(&pimm), a0 y(&pimm), a0 s(&pimm), a0 f (&pimm),
16: (a0 x1 & a0 yl),

17: a0 x(next), a0 y(next), a0 s(next), a0 f(next),

18: m0 x(&pimm), mO0 y(&pimm), m0 s(&(long)pimm), mO0 f (&pimm),
19: (m0_x * m0_y),

20: m0 x(next), m0 y(next), mO s(next), mO0 f(next);

21:

22:

23: /* that's all folks.... */

24:

end of source at LINE 27
$

Doc. Number: 501-0004 156

	NS85 Programmers Reference Manual
	Scope
	Introduction
	Programmers Model
	Introduction
	Compute Modules
	Processor Data Memory

	DSP Top Level
	Program Unit Resources
	Program Counter Register
	Instruction Register
	Pimm Register
	Repeat Register
	Iterate Registers
	DMA Configuration Register
	Configuration Register

	ALU0 Resources
	ALU0 X register
	ALU0 Y register
	ALU0 S register
	ALU0 Flags register
	ALU0 Register Bus

	MAC0 Resources
	MAC0 X register
	MAC0 Y register
	MAC0 S register
	MAC0 Flags register
	MAC0 Register Bus

	MAC1 Resources
	MAC1 X register
	MAC1 Y register
	MAC1 S register
	MAC1 Flags register
	MAC1 Register Bus

	SM ACU & Memory Resources
	SM SERW
	SM A register
	SM I register
	SM S register
	SM E register
	SM R register
	SM W register
	SM B0 bus
	SM B1 bus
	SM B2 bus
	SM B3 bus

	ACU 0 Data Memory & ACU Resources
	ACU0 C register
	ACU0 R register
	ACU0 W register
	ACU0 D register
	ACU0 Post-modified Pointer

	ACU 1 Data Memory & ACU Resources
	ACU1 C register
	ACU1 R register
	ACU1 W register
	ACU1 D register
	ACU1 Post-modified Pointer

	ACU 2 Data Memory & ACU Resources
	ACU2 C register
	ACU2 R register
	ACU2 W register
	ACU2 D register
	ACU2 Post-modified Pointer

	ACU 3 Data Memory & ACU Resources
	ACU3 C register
	ACU3 R register
	ACU3 W register
	ACU3 D register
	ACU3 Post-modified Pointer

	Pipeline Information
	Pre-Fetch Stage
	FETCH Stage
	DECODE Stage
	EXECUTE Stage
	DMEM Stage
	Pipeline Operation
	Hazards
	Control Hazards
	Structural Hazards
	Data Hazards

	Instruction Types

	Syntax & Language Constructs
	Introduction
	Syntax
	Program
	Comments
	Instructions
	Instruction clauses
	Label Define Clause
	Label Use Clause
	Immediate Clause
	Pimm Clause
	Configuration clause
	DMA Configuration clause
	Register-See Clause
	ALU0 Register-See Clause
	MAC0 Register-See Clause
	MAC1 Register-See Clause
	SM Register-See Clause
	SM B0123 Register-See Clause
	ACU 0 ACU Register-See Clause
	ACU 0 Pointer Register-See Clause
	ACU 1 Register-See Clause
	ACU 1 Pointer Register-See Clause
	ACU 2 Register-See Clause
	ACU 2 Pointer Register-See Clause
	ACU 3 Register-See Clause
	ACU 3 Pointer Register-See Clause

	Operation Clause
	ALU0 Operation Clause
	MAC0 Operation Clause
	MAC1 Operation Clause
	SM Operation Clause
	ACU0 Operation Clause
	ACU1 Operation Clause
	ACU2 Operation Clause
	ACU3 Operation Clause

	Update Clause
	ALU0 Update Clause
	MAC0 Update Clause
	MAC1 Update Clause
	SM Update Clause
	ACU0 Update Clause
	ACU1 Update Clause
	ACU2 Update Clause
	ACU3 Update Clause

	Instruction Reference
	Introduction
	Control Instructions
	Configuration Instructions
	Program Flow Instructions
	Data Flow Control Instructions

	Compute Instructions
	ALU Instructions
	ALU-MAC Instructions
	MAC Instructions

	ACU configuration instruction
	syntax
	description
	flags affected
	examples

	ACU Data Memory 0/1 with immediate instruction
	syntax
	description
	flags affected
	examples

	ACU Data Memory 0/2 with immediate instruction
	syntax
	description
	flags affected
	examples

	ACU Data Memory 0/3 with immediate instruction
	syntax
	description
	flags affected
	examples

	ACU Data Memory 1/0 with immediate instruction
	syntax
	description
	flags affected
	examples

	ACU Data Memory 1/2 with immediate instruction
	syntax
	description
	flags affected
	examples

	ACU Data Memory 1/3 with immediate instruction
	syntax
	description
	flags affected
	examples

	ACU Data Memory 2/0 with immediate instruction
	syntax
	description
	flags affected
	examples

	ACU Data Memory 2/1 with immediate instruction
	syntax
	description
	flags affected
	examples

	ACU Data Memory 2/3 with immediate instruction
	syntax
	description
	flags affected
	examples

	ACU Data Memory 3/0 with immediate instruction
	syntax
	description
	flags affected
	examples

	ACU Data Memory 3/1 with immediate instruction
	syntax
	description
	flags affected
	examples

	ACU Data Memory 3/2 with immediate instruction
	syntax
	description
	flags affected
	examples

	ALU-ACU instruction
	syntax
	description
	flags affected
	examples

	ALU0 with Immediate instruction
	syntax
	description
	flags affected
	examples

	ALU0-MAC0 instruction
	syntax
	description
	flags affected
	examples

	ALU0-MAC1 instruction
	syntax
	description
	flags affected
	examples

	Branch instruction
	syntax
	description
	flags affected
	examples

	Call instruction
	syntax
	description
	flags affected
	examples

	Configuration Register load instruction
	syntax
	description
	flags affected
	examples

	DMA Configuration Register load instruction
	syntax
	description
	flags affected
	examples

	If (conditional execution) instruction
	syntax
	description
	flags affected
	examples

	Iterate instruction
	syntax
	description
	flags affected
	examples

	MAC0 with Immediate instruction
	syntax
	description
	flags affected
	examples

	MAC0-MAC1 instruction
	syntax
	description
	flags affected
	examples

	MAC0-MAC1-ACU Instruction
	syntax
	description
	flags affected
	examples

	MAC1 with Immediate instruction
	syntax
	description
	flags affected
	examples

	Nop instruction
	syntax
	description
	flags affected
	examples

	Repeat instruction
	syntax
	description
	flags affected
	examples

	Return instruction
	syntax
	description
	flags affected
	examples

	Scratch Memory/Pointer Cache with immediate instruction
	syntax
	description
	flags affected
	examples

	Appendix – Instructions in Numerical Order
	Appendix – Using the Asm85 Assembler
	Requirements
	Operating Environment

	Invocation
	Program options
	Normal output example
	Listing mode output example

